

MASTER THES IS

Automatic Verification and Symbolic
Analysis for 0-RTT Security in TLS 1.3

Author:

Fadi Abu Farha

Supervisor:

Dr. Ahmad Alsadeh

A thesis submitted in fulfillment of the requirements for the

degree of Master of Science

in Computing at Birzeit University, Palestine

December 18, 2018

Abstract

Transport Layer Security (TLS) protocol is one of the most important and widely

used cryptographic protocols that is introduced to provide secure communication

over Internet. However, over twenty years, attacks against TLS show weaknesses

and pitfalls in the protocol design and implementation. Therefore, Internet Engi-

neering Task Force (IETF) is in continuous development to revamp the security of

TLS by adding new security features to avoid the weakness of older protocol ver-

sions.

Many design goals were proposed in many fields of the TLS protocol to finally

produce a new secure, reliable and fast version of this protocol, specifically, reduc-

ing the latency of the key exchange (KE) protocols while maintaining the security

guarantees represented by forwarding secrecy. To achieve this, zero round trip time

(0-RTT) protocol is a candidate solution.

We explore a practical solution to protect the KE process and sends the early

data in 0-RTT with full Perfect Forward Secrecy (PFS) and preventing the replay at-

tack. To this end, we analyze the 0-RTT handshake process using Diffie-Hellman and

pre-shared keys in TLS1.3; by extending and updating a previous model of 0-RTT

protocol in the TLS1.3 protocol specifications (RFC8446). By studying related work

which attempted to solve the PFS and replay attack using either puncture mech-

anism or Google Quick UDP Internet Connection (QUIC) protocol, we found that

both solutions have significant performance drawbacks.

We present a new approach to implement 0-RTT based on TLS1.3 without sac-

rificing PFS. We support the theoretical approach by practical tests using a Tamarin

tool for symbolic modeling and analysis of TLS1.3 security protocols. In the practical

experiments, we simulate several attempts to break PFS using Tamarin component

and we verify that the solution guarantees PFS. Moreover, we deduce that attempt-

ing to solve the PFS problem by Diffie-Hellman using more than one key will require

a fundamental change to the structure of Diffie-Hellman which ends up with a new

protocol that need intensive reviews and studies.

 المستخلص

 TLS 1.3في بروتوكول أمان طبقة النقل RTT-0التحقق الآلي والتحليل الرمزي ل

 إعداد: فادي أبوفرحة

 استخدامًا الأكثر التشفير بروتوكولات أهم أحد (TLS) النقل طبقة أمان بروتوكول يعتبر

 تعرض فقد ذلك، ومع. الإنترنت شبكة عبر طرفين بين آمن اتصال يوفر والذي

 التي و عاما، عشرين من أكثر دامت التي المتوالية الهجمات من العديد إلى وتوكولالبر

 مهام فريق فإن ولذلك،. البروتوكول هذا وتنفيذ تصميم في والضعف القوة نقاط أظهرت

 طبقة أمان وتجديد تطوير على للحفاظ مستمر وبشكل بجد يعمل (IETF) الإنترنت هندسة

 إصدارات ضعف لتجنب جديدة أمان ميزات إضافة طريق عن (TLS) الآمنة النقل

 .القديمة البروتوكول

 لإنتاج (TLS) بروتوكول مجالات من العديد في التصميم أهداف من العديد اقتراح تم

 استجابة وقت تقليل وتحديداً البروتوكول، هذا من وسريع وموثوق آمن جديد إصدار

 إعادة في المتمثلة الأمنية الضمانات ىعل الحفاظ مع (KE) المفاتيح تبادل بروتوكولات

 الحل هو(RTT-0ة)الرحل لوقت صفر بروتوكول يعتبر ذلك، ولتحقيق. السرية توجيه

 .المرشح

 البيانات وإرسال (KE) المفاتيح تبادل عملية لحماية عمليا حلً باستكشاف نقوم نحن

 توجيه إعادة عملية منعو (PFS) التامة السرية على الحفاظ مع(RTT-0) باستخدام المبكرة

 (RTT-0) مصافحة عملية بتحليل نقوم لذلك، حقيقا. ت(Replay Attack) البيانات

 المشتركة المفاتيح استخدام اعادة وكذلك (Diffie-Hellman(DHE)) نظرية باستخدام

 والتعديل التحديث طريق عن ؛(TLS1.3) البروتوكول في (PSK) مسبقاً تبادلها تم التي

 بعض بوضعها قام التي ((RTT-0 ل السابقة والنماذج الابحاث بعض على افةوالاض

 الآمن النقل طبقة بروتوكول بمواصفات يعُرف ما على المجال هذا في الباحثين

(TLS1.3) .مشكلتي حل بمحاولة قامت والتي الصلة ذات السابقة الأعمال دراسة بعد

(PFS) البيانات توجيه إعادة هجوم ومنعReplay Attack))، الثقب آلية باستخدام

(Puncture) جوجل بروتوكول أو (QUIC)، يتضمنان المقترحين الحلين كل أن وجدنا

 .ألاداء سرعة على تؤثر والتي التحديات بعض

 حماية بضمان التضحية دون (TLS1.3) في (RTT-0) لتنفيذ جديد مقترح نقدم نحن

 أداة باستخدام العملية الاختبارات خلل من نظريال النهج هذا ندعم نحن .(PFS) البيانات

 تقوم والتي .(TLS) أمان بروتوكولات وتحليل الرمزية للنمذجة (Tamarin) تمارين

 (PFS) البيانات حماية ضمان لخرق محاولات عدة خلل من الاختراق عملية بمحاكاة

 يضمن اقترحناه الذي الحل أن من بالتحقق بالفعل قمنا ولقد الأداة، هذه عناصر باستخدام

 بواسطة (PFS) مشكلة حل محاولة أن نوضح ذلك، على علوة .(PFS) البيانات حماية

(DHE) واحد مفتاح من جزء من أكثر باستخدام (Key-Share) تغييرًا يتطلب سوف

.مكثفة ودراسات مراجعات إلى يحتاج جديد بروتوكول تنتج والتي (DHE) بنية في جذرياً

ii

Acknowledgments

الحمد لله كما أمر والصلة والسلم على حبيبنا الهادي والمبعوث رحمة للبشر، الذي تلقى رسالة

العلم)إقرأ(من فوق سابع سماء ونقلها بمحبة إلى البشر، فاللهم إنا نسألك علماً نافعاً وزيادةً في العلم

 لننتفع بها وننفع اخواننا من البشر.

ر الجزيل والامتنان والعرفان لحضرة الدكتور الغالي على قلبي د.أحمد بادئ ذي بدئ أتوجه بالشك

فني بأن أكون أحد الطلبة الذين حازوا شرف العمل تحت اشرافه وإتباع نصائحة السعده والذي شر

وتوجيهاته القيمة والتي أعانتني على اتمام العمل على هذه الرسالة. فالعمل على الرسالة ساعدني

البحث والتحليل والتواصل، ليس فقط على الصعيد الأكاديمي وإنما على الصعيد على صقل مهارات

العملي والاجتماعي والديني والذي جعلني أتنبه أن الحياة هي الامتحان الأصعب والذي يجب أن نعُد

 له بجدية حتى نفوز في دنيانا وأخُرانا.

يئة التدريسية في جامعتنا العريقة أريد أيضا أن أعبر عن فائق شكري واحترامي لجميع طاقم اله

بيرزيت بشكل عام وخصوصا اللذين تلقيت منهم المواد التعليمية خلل فترة الماجستير وهم: د.عبد

اللطيف أبوعيسى، د.عدنان يحيى، د.إياد طومار، د.أحمد عفانه، د.واصل غانم، د.مأمون نواهضة،

 د. سامر الزين، والدكتور عبد الكريم عواد.

يضاً أن أشكر جميع زملء الدراسة والعمل وجميع من ساهم في دعمي سواءً نفسياً أو معنوياً أريد أ

واللذين كان لهم الأثر الكبير في تجاوز الكثير من العقبات وأخص بالذكر الأخ العزيز والغالي

ك والذي دعمني في جميع مراحل الدراسة أخي الحبيب هيثم الصالحي، ألف ألف شكر لا تكفي، جزا

 الله عني كل خير ووفقك إلى ما يحب ويرضى.

وأخيراً وليس آخراً أشكر ومن أعماق قلبي أفراد عائلتي جميعاً واللذين لولاهم لم أخطُ خُطوة واحدة

في حياتي، اليك يا والدتي الحبيبة والتي لم تنفك تدعو لي ليلً نهاراً وتسأل عني قبل وبعد كل

عاها وبارك في عمرها وفي صحتها وفي عافيتها، وكذلك إلى امتحان وكل واجب، حفظها الله ور

روح والدي الحبيب رحمه الله والذي هو سبب دخولي في برنامج الماجستير، وكان الأب والأخ

والصديق والناصح، رحمه الله وأسكنه الفردوس الأعلى، إلى أختي فادية والتي ما زال أثر دعائها

بفضل الله، إلى ريم ومنى ومحمد وعمار وخليل وجميع يفتح لي كل الصعاب وييسر كل عسير

 أبنائهم، أحبكم جميعا من أعماق قلبي.

وفي الختام أشكر من كل قلبي زوجتي الحبيبة هبة والتي كانت بمثابة الأم والأخت والزوجة والتي

كانت تساعدني في ترتيب جميع المواعيد وتساعدني حتى في الدراسة وفي الطباعة وتنسيق

شاريع والكثير الكثير مما لا يعد ويحصى فمليون شكر لايكفي، كذلك أبنائي اللذين تحملوني الم

ها إلى رهف ومحمود وتاليا كل الحب والعرفان، أعانني الله أن طوال هذه الفترة بحلوها ومر

 أعوض ما فاتنا معاً من أيام جميلة.

وصحبه على سيدنا محمد وعلى آلهوالسلم وآخر دعوانا أن الحمد لله رب العالمين والصلة

 أجمعين.

vii

Approved by the thesis committee:

Dr. Ahmad Alsadeh, Birzeit University

Dr. Abdalkarim Awad, Birzeit University

Dr. Iyad Tumar, Birzeit University

Date approved:

iv

Declaration of Authorship

I, Fadi AB U FA R H A, am declare that this thesis titled, “Automatic Verification and

Symbolic Analysis for 0-RTT Security in TLS 1.3” and the work presented in it are my

own. I confirm that:

• This work was done wholly or mainly while in candidature for a master degree at

Birzeit University.

• Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed my- self.

 Signed:

 Date: 17-12-2018

v

acks on TLS 18

3.0.1 SSL Stripping . 18

3.0.2 STARTTLS Command Injection Attack 19

3.0.3 BEAST . 19

3.0.4 Padding Oracle Attacks . 21

3.0.5 Attacks on RC4 . 21

Transport Layer Security (TLS) Foundation 6

2.1 TLS Protocol . 6

 2.1.1 TLS Protocol Brief History . 7

2.2 TLS Location in Network Layers . 8

2.3 TLS Cryptography . 9

2.3.1 Symmetric Encryption . 10

2.3.2 Stream Ciphers . 11

2.3.3 Block Ciphers . 12

2.3.4 Padding . 12

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Approaches to verify TLS security properties - 0-RTT 2

1.2.1 General Approach: Verifying TLS security properties in general 2

1.2.2 Specific Approaches: Verifying 0-RTT security properties 3

1.3 Problem Statement and Scope . 3

1.4 Research Objectives and Methodology 3

1.5 Contributions . 4

1.6 Outline . 5

2

2.4 Protocols Overview and Structure . 13

2.5 TLS1.3 New Features . 16

3 Att

3.0.6 Compression Attacks: CRIME, TIME, and BREACH 21

3.0.7 Certificate and RSA-Related Attacks 21

3.0.8 Theft of RSA Private Keys . 22

3.0.9 Diffie-Hellman Parameters . 22

3.0.10 Renegotiation . 22

vi

Tamarin Prover for Security Protocols Modeling 23

4.1 Automatic Protocol Analysis . 23

4.2 Constraint Solving Algorithms . 24

4.3 The Tamarin Prover . 25

 4.3.1 Formalism . 25

 4.3.1.1 Messages . 25

4.3.1.2 Supported Verification Problems 27

 4.3.1.3 Execution and State . 28

4.3.2 Protocols Modeling . 29

4.3.3 Modeling of Protocol steps . 32

4.3.4 Property Specification . 35

 4.3.4.1 Trace Properties . 35

4.3.5 Security Properties . 36

 4.3.5.1 Secrecy . 36

 4.3.5.2 Perfect Forward Secrecy PFS 37

4.3.6 Authentication Properties . 40

 4.3.6.1 Aliveness . 40

 4.3.6.2 Weak agreement . 40

 4.3.6.3 Non-injective agreement 40

 4.3.6.4 Injective agreement . 41

4

5 Modeling and Analyzing of TLS 1.3 Handshake Modes 42

5.0.1 DHE Mode Modeling and Analysis 43

5.0.1.1 DHE Mode Modeling 43

5.0.1.2 Key Exchange . 44

5.0.1.3 Server Parameters . 45

5.0.1.4 Diffie-Hellman Mode Analysis 49

5.0.1.5 DHE Mode Results . 52

5.0.2 Pre-shared keys (PSK) Modes Modeling and Analysis 53

5.0.2.1 Pre-shared key Modes Modeling 54

 5.0.2.2 PSK Mode Analysis . 56

5.0.2.3 PSK Mode Results . 58

5.0.3 0-RTT Modeling and Analysis 59

5.0.3.1 0-RTT using Diffie–Hellman exchange 61

5.0.3.2 0-RTT using Pre-shared key exchange 62

 5.0.3.3 0-RTT Model . 62

 5.0.3.4 Replay Attack Problem 66

6

Conclusion

68

Bibliography 69

v
ii

List of Figures

2.1 Stream Cipher process [34] . 11

2.2 TLS padding illustration [30] . 12

2.3 Structure of SSL/TLS Protocol [35] . 13

2.4 Operations of SSL/TLS Record Protocol [36] 14

2.5 Operations of Handshake Protocol [35] 16

3.1 Attacks and Analysis Line on TLS protocol [39] 18

3.2 BEAST attack against CBC with predictable IV [30] 20

4.1 Graphical user interface and Command line interface 24

4.2 Part of PSK resumption Handshake . 30

4.3 Diffie-Hellman handshake protocol . 31

5.1

TLS1.3 Full handshake protocol [65]

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

42

5.2 TLS1.3 PSK handshake protocol [65] . 53

5.3 Puncturing algorithm to prove PFS [15], [70]. 60

5.4 TLS1.3 0-RTT handshake protocol [65] 61

5.5 The original Tamarin code vs. Our Proposal 63

5.6 The original Tamarin Result vs. Our Proposal Result 64

5.7 The Tamarin psked screen shot . 65

5.8 Replay attack by Daniel [72]. 66

viii

List of Tables

2.1 OSI Model Layers . 9

2.2 (Stream & Block) Cipher Encryption [35] 14

2.3 Alert Protocol Messages [35] . 15

2.4 Cipher Suites for SSL [35] . 15

2.5 SSL Handshake Messages [35] . 17

5.1

Server agreement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

51

5.2 Week agreement vs. injective agreement 52

5.3 Diffie-Hellman Model Results . 53

5.4 Secrecy . 57

5.5 Achieving PFS for both parties . 57

5.6 Injective Agreement . 58

5.7 PSK Model Results - Original Model . 58

5.8 0-RTT Analysis . 63

5.9 0-RTT Data Analysis Results . 65

ix

List of Abbreviations

0-RTT Zero-Round Trip Time

CH Client Hello

CR Certificate Request

CSRF Cross-Site Request Forgery

CTC Client Certificate

CTS Server CertificateVerify

CVC Client CertificateVerify

CVS Server Certificate

DHE Ephemeral Diffie-Hellman

EE Encrypted Extensions

EF Early Finished

encKey encryption Key

 FIC Client Finished

FIS Server Finished

HIBE Hierarchical Identity-Based key Encapsulation

HRR Hello Retry Request

HSTS The HTTP Strict Transport Security

IETF Internet Engineering Tast Force

KE Key Exchange

MAC Messagel Authentication Code

macKey message authentication Key

MD5 Message Digest

MITM Man In The Middle

NST New Session Ticket

PFS Perfect Forward Secrecy

QUIC Quick UDP Internet Connections

SH Server Hello

SHA Secure Hash Function

TLS Transport Layer Security

trKey traffic key

TSH The handshake up to Server Hello

1

Chapter 1

Introduction

The Transport Layer Security (TLS) protocol is one of the most widely spread crypto-

graphic protocols in practice [1]. It is responsible for providing security over Internet

connection to prevent tampering, message forgery and eavesdropping. TLS consid-

ered as the core of the Internet security infrastructure. 1995 was the date of birth

of this protocol for the Netscape company that named it by Secure Socket Layer

(SSL) [1]. This protocol has been growing up with much attention since that time

and has been subject to improvements and updates ever since.

Most networks all over the world are not secure by itself. To securely communi-

cate over these widespread networks, we need secure algorithms, namely protocols,

which achieve security goals, such as authentication and secrecy.

TLS is the most important protocol that critically affects business infrastructures

and modern networks. It’s important to have security protocols, but most impor-

tantly is to verify these security protocols. Therefore, unverified protocols may cause

the loss of money or seriously companies’ damages.

1.1 Motivation

TLS has been repeatedly suffering from security weaknesses and deficiencies. Either

on its cryptographic primitive or on the design of the TLS protocol itself. Accord-

ingly, many modifications have been conducted to this protocol. Specifically, after

the emergence of RC4 and BEAST attacks in 2011, which led to intense analysis and

academic study that produces a vast work in less than five years [2]–[8], that is al-

most equal to the entire studies that have been done during the past two decades [9]–

[13]. Many of these studies have revealed weaknesses and proposed great solutions

in both, manual and automatic analysis [1].

According to TLS security weaknesses, occasional updates and recurrent modifi-

cations, TLS becomes more complicated, as well as the implementation and deploy-

ment process becomes hard to achieve. Specifically achieving low latency overhead

for the key exchange protocol. Marc et al. [14] have targeted the 0-RTT protocol in

order to raise up the speed of key exchange. On the other hand, Felix et al. [15]

have shown that it is impossible to achieve PFS and to get secure against the replay

2 Chapter 1. Introduction

attack in TLS 1.3 using 0-RTT. However, Google QUIC protocol have prevented re-

play attack in key exchange process but it fails to prevent replay attack for the data

exchange, which remarks as a logical replay attack [14]. This motivates us to seri-

ously do our best to find an approach that achieve full forward secrecy and get rid

of replay attack problem.

1.2 Approaches to verify TLS security properties - 0-RTT

We divide our approaches into; general approach and specific approach as follows:

1.2.1 General Approach: Verifying TLS security properties in general

This approach shows the differences between manual and automatic verification of

TLS security properties alongside with the needed tools.

Many approaches have been proposed in the last few years in order to check

and verify the specifications of the TLS protocol. The first approach depends on

manual verification of security protocols, using successful methods, for instance, ex-

ploration [16], induction [17], and belief logic [18] methods. However, this approach

does not support automation, which makes the manual verification methods hard

to achieve in practice according to the unbounded number of sessions.

Other proposed approach based on automatic tools; AVISPA tool set [19], FDR [20],

ProVerif [21], Scyther [22], and Tamarin prover [23]. The main difference between

these automatic tools is using the explore state space that is exploring all possible

behaviors, or exploring strict subsets, namely scenario [24].

One of these automatic analysis approaches used label transition system and

knowledge reasoning to sufficiently and correctly specify and verify security proto-

cols using SeVe tool [25], which support anonymity and privacy along with security

properties like authentication and secrecy.

Another two powerful approaches are ProVerif [21] and Scyther [22]. ProVerif

is a protocol-specific abstractions that reduce the existence of attacks on a security

protocol to the standard problem in logic; namely Horn clauses. The Scyther tool

does not use any abstraction like ProVerif does, but both of them deal with a linear

sequence of send and receive steps called roles. In addition, they both have almost

the same performance [26].

The last approach is adapted from Scyther-proof’s verification theory as a sup-

portive model for non-monotonic state modeling and includes Horn-theories as a

special case [26]. This model is practically implemented in the Tamarin prover tool,

because it offers many unique features; it supports unbounded verifications of se-

curity properties, flexible properties, equational theories, global state, and falsifica-

tion of the protocols, it also automatically construct many parallel interleaved pro-

tocol roles automatically, it supports loops and branches well and it supports Diffie-

Hellman (DHE) as a built-in symbolic protocol inside Tamarin [27]. So, we built our

1.3. Problem Statement and Scope 3

approach using Tamarin prover tool to analyze and update 0-RTT model in TLS 1.3

specifications.

1.2.2 Specific Approaches: Verifying 0-RTT security properties

We show the most recent two approaches that aimed to solve the PFS and replay attacks

pitfalls:

The first approach has been invented by Google. QUIC protocol uses a third party

server to store the server key share, which allows the client to directly send its payload

data at the first flight by combining its own key share with one of the server key shares.

The second approach is done by Gunther et al. [15], they took advantage of using a

puncturing algorithm, which immediately deletes the key used to decrypts the cipher text

only once, then developing the session key rather than modifying the related public key.

In order to achieve this, they have used a secure Hierarchical Identity-Based key

Encapsulation (HIBE [28]) scheme to create many keys out of only one key, more details for

these two approaches can be found in 2.1.1 and 5.0.3 sections.

1.3 Problem Statement and Scope

After viewing QUIC, Puncture algorithm and comparing manual vs. automatic ver- ification

tools, we went through the proactive development process of TLS 1.3 speci- fication

protocol, which aims to improve protocol efficiency using the analysis-prior- to-deployment

process to address the weaknesses and to prevent attacks of TLS1.3 protocol, specifically

achieving 0-RTT with PFS and preventing replay attacks before its first release instead of

using the post-deployment-analysis process after releasing the TLS1.3 protocol (note: the

proactive process used to be on draft-28 that we were working on, whereas the RFC8446

has released recently after defending this thesis). In this thesis, we look into analyzing and

updating the model of 0-RTT protocol in the TLS 1.3 using an automatic analysis of a

security protocol tool called; Tamarin prover [23].

1.4 Research Objectives and Methodology

The main objective of this study is to analyze the core security properties of the TLS

1.3 specifications, during the development phase; using the Tamarin prover tool [23]. Mainly,

our focus on proving the PFS and preventing the replay attack on 0-RTT KE protocol.

Proving/disproving the security properties of PFS and replay attack for

0-RTT KE protocol.

In this study, we follow a scientific approach of research; to analyze and update the

model for 0-RTT in the TLS 1.3 using Tamarin prover tool. We accomplish our main

objective through the following these steps:

4 Chapter 1. Introduction

1. Selecting the modeling tool: TLS 1.3 has its own security properties and KE

protocols. We are going to use the Tamarin tool to analyze these security prop-

erties and create our own models or update existing models after testing and

verifying the recent models; to finally achieve our target of proving 0-RTT KE

protocol secrecy in order to make the entire protocol clean and safe.

2. Experimental design: Our experimental process focus on key exchange meth-

ods, either to exchange a list of DHE key shares; between parties, to be used

one at a time, then deleting the used keys; or using a combination of PSK keys

to achieves PFS. Moreover, we need to find a way to prevent the replay attack

problem benefiting from using the ephemeral keys and fresh nonces or message

authentication code (MAC).

3. Running experiments: In the first phase, we have tested, verified and con-

firmed the TLS protocol model that was created by Stettler [29] using Tamarin

tool then, we have updated the 0-RTT model by adding many DHE key-share

instead of one. Moreover, we did a combination of pre-shared keys to be used

in the key exchange process. We noticed that we got a positive results, which

converts the state of falsified (that denotes attack) in Stettler ’s results to verified

(which denotes a proof - secure protocol properties) as shown in Table 5.7.

4. Evaluating the results: We compared our results with Stettler ’s results then,

we made sure that our results are compatible with the TLS security protocol

properties and if they are acceptable and achieve the TLS constraints.

1.5 Contributions

The main two folds contributions in this thesis are proving the PFS and prevent-

ing replay attacks for 0-RTT KE protocol, by proposing two methods, firstly, we

used DHE hand shake KE protocol to theoretically prevent replay attacks by creat-

ing a list of ephemeral keys-shares for the client and the server, (clientshare : x1 =

ga1 , x2 = ga2 , x3 = ga3 ...etc., servershare : y1 = gb1 , y2 = gb2 , y3 = gb3 , ...etc.) these

key-shares are exchanged between the parties in order to use them once per a ses-

sion resumption, then vanishes, and regenerate another list before consuming the

last key. Secondly, we used a PSK method to achieves PFS by combining multiple

pre-shared keys (psk = H K DF (< psk1, psk2 >)), which allows the client to send

early data with 0-RTT in the first flight of KE process alongside with keeping the

PFS. To this end, we have tested, verified, confirmed, and partially updated some

of security properties of TLS 1.3 protocol that done by Stettler [29]. Specifically, PSK

using the Tamarin prover tool to model the protocol handshake process and the flow

of messages between parties.

1.6. Outline 5

1.6 Outline

This thesis contains six chapters, which structured as follows:

Chapter 2 the foundation; including the history of Transport Layer Security protocol,

through the development process of this protocol including threats, flaws and mod-

ification, showing the weaknesses and strengths of TLS protocol, and introducing

cryptography basics. Chapter 3 presents more about the TLS attacks. We introduce

the Tamarin prover tool in chapter 4. Chapter 5 includes modeling, analyzing and

updating the TLS1.3 besides 0-RTT models using Tamarin tool. Then conclude and

results take place in Chapter 6.

6

Chapter 2

Transport Layer Security (TLS)

Foundation

Internet connection becomes one of the most important part of our lives, even more,

the Internet has changed our lives. The world around us becoming more connected

day after another, especially with the massive widespread of computers and smart-

phones, which we use to communicate, pay bills, shop online, travel, bank transac-

tions and much more. In order to do these operations, we need a secure protocol in

common, to protect our transmitted data across these interconnected devices [30].

2.1 TLS Protocol

The Internet connection was initially limited to number of users. For instance, uni-

versities have used it in scientific research. Therefore, no need for a high level of

protection. Meanwhile, the communication protocols were implicitly insecure [30].

However, with the widespread of Internet connection and the emergence of e-commerce

websites, the need for a strong and secure protocol has emerged. Consequently,

In 1995, Netscape released the first version of TLS protocol, namely SSL protocol1,

which is one of the most important and widely used cryptography protocols that

was introduced to provide secure communication over insecure infrastructure [1].

TLS protocol is one of the most important and widely used cryptography proto-

col that provides secure communication between two parties to exchange messages

over TCP protocol.

The properly developed SSL/TLS protocol provides the client with a secure com-

munication channel to the intended server, the information will arrive correctly and

safely with no tampering or content change by others, protecting the transport layer

link, which is the reason for naming the protocol as TLS. Besides the TLS security

goals that are represented as follows:

• Cryptographic security: Enable exchanges the information between two par-

ties in a secure communication by selecting the cryptographic algorithms.

1 SSL is the predecessor protocol for TLS: The same protocol with two names (SSL/TLS).

2.1. TLS Protocol 7

• Interoperability: Developers have the ability to use the common cryptographic

parameters under the same framework to build their libraries, code, and pro-

grams that easily intersects with each other without errors (Briefly: write once,

run everywhere).

• Extensibility: TLS effectively deals with actual cryptographic protocols as a

reference framework for deployment and development, aiming at allowing

migration between the existing primitives instead of creating new protocols

and to be independent of the actual cryptographic primitives used.

• Efficiency: Achieving an acceptable performance cost, providing session cache

scheme and minimizing the costly cryptographic to insure achieving the above

three goals.

2.1.1 TLS Protocol Brief History

The SSL/TLS protocol has a long history, back to November 1994 when Netscape

released the second version, called SSL2.0 after the first version had cryptographic

flaws and never saw the light. The second version didn’t last longer, after the first

deployment of SSL2.0 using Netscape Navigator version1.1 in March 1995, it had

cryptographic and practical flaws, because Netscape did not ask for any expert con-

sultation from outside. Few months later, Netscape comes out with a stronger, more

secure and new design version namely SSL3.0 protocol.

In May 1996, after political issues and a real competition between Netscape and

Microsoft to control the Web, both companies have agreed to support the IETF taking

over the protocol, which leads to release TLS1.0 in January 1999, as RFC2246. The

TLS1.0 is the same as SSL3.1 that is an adapted version of SSL3.0, done by IETF.

In April 2006, TLS1.1 was released including only security fixes. Taking in con-

sideration the incorporation of TLS extensions that were released in June 2003 as a

major change to TLS1.0.

In August 2008, TLS1.2 was released, all hard-coded security primitives were

removed from the specification and additional support for authenticated encryption.

These modifications increased the elasticity of the protocol.

A few months ago, while working on this thesis, in August 2018, TLS1.3 was

lastly released after a hard work by the IETF working group to make it stronger,

less complex, and optionally faster if using 0-RTT, taking into account the trade-off

between speed versus weaker anti-replay attacks. But, we are still able to use 0-RTT

in some cases where the impact of replay attack is less severe or the level of security

offered by TLS1.3 is not required. However, we propose a solution to the 0-RTT

problem to prevent replay attacks and the PFS problem as well.

8 Chapter 2. Transport Layer Security (TLS) Foundation

Zero Round-Trip Time (0-RTT)

The time between sending a message back and forth between two parties is called

round-trip time (RTT) during the key exchange process (KE). Reducing the com-

plexity of this round-trip time was the major concern of the KE protocols’ designers.

Many low-latency designs for KE has been proposed in several researches [31], [32].

Google’s QUIC protocol and TLS 1.3 protocol are practical examples that estab-

lish an initial key in zero round-trip time 0-RTT, which allows the client to send his

key share message alongside with early data to a pre-visited server. It’s known that

the client key-share without the server key-share contribution does not guarantee

the same strong security as standard key exchange protocols (classical KE protocol

that needs a full round-trip time). Particularly, the forward secrecy cannot be pro-

vided by the initial key-share since no shared state between sessions. Moreover,

most of the keying material is compromised after running the KE protocol except

the ephemeral keying material. The protocol achieves forward secrecy in the second

step; after the server contributes its key-share.

2.2 TLS Location in Network Layers

IP and TCP protocols are considered major pillars of Internet construction, which

are responsible for good, solid, and reliable communication between two entities on

the network over the familiar Internet Protocol (IP) address, in order to send/receive

data packets across many computer nodes (hops) for a long or short path. This in-

secure path makes the transferred data vulnerable to be stolen or hijacked, this is

because the IP and the TCP protocols do not provide security by themselves. Many

other vulnerable protocols, such as BGP can be exploited by the attackers. More-

over, the attacker may replace these routing protocols, and redirect the connection

to himself.

Even though the attackers might be able to hijack the encrypted data, they still

cannot decrypt it. To guarantee message authenticity, TLS uses the Public-Key In-

frastructure (PKI) algorithm.

As shown in Table 2.1, the known Open Systems Interconnection (OSI) model,

which includes seven layers, starting from the physical layer up to application layer.

The SSL/TLS lays between TCP and application layer, we can still work directly

with TCP and remove SSL/TLS from our model -if the encryption process is not

necessary- without affecting other protocols. When there is a necessity for encryp-

tion, we just use SSL/TLS to encrypt HTTP. Moreover, we can encrypt other impor-

tant protocols, such as SMTP, IMAP and any other TCP protocol.

2.3. TLS Cryptography 9

TABLE 2.1: OSI Model Layers

Layer No. OSI Layer Function/Description Examples Protocol

Layer7

Application

Application data
HTTP, SMTP,

IMAP

Layer6

Presentation
Data representation, conversion,

encryption

SSL/TLS

Layer5

Session
Management of multiple

connections

Net-BIOS, Sockets

Layer4

Transport
Reliable delivery of packets

and streams

TCP, UDP

Layer3

Network

Routing and delivery of

datagrams between network

nodes

IP, IPsec

Layer2

Data link
Reliable local data

connection (LAN)

Ethernet

Layer1

Physical
Direct physical data connection

(cables)

CAT5

2.3 TLS Cryptography

Cryptography was almost limited to military, diplomatic and government applica-

tions till the 1970s, then some financial and telecommunication industries start using

it during the 1980s. Nowadays, cryptography has become one of the most important

topics in our daily life. For instance, shopping using credit card, voice-over-IP phone

calls, e-health applications and the evolution of smart cities will make cryptography

even more ubiquitous.

Today, cryptography algorithms are much stronger, security definitions are bet-

ter understood, and new algorithms have replaced the old broken ones. A lot of

intersection between computer science, math, and electrical engineering areas to

produce a secure cryptography system, which means, we need to combine more

than one scientific field to finally get secure cryptographic methods/systems.

Paar et al. [33] defines Cryptography as " The science of secret writing with the

goal of hiding the meaning of a message". Which was the first branch of cryptology.

The second branch is cryptanalysis, which is a way of breaking cryptosystems to get

the plaintext without a need to know the encryption details. The cryptanalysis is a

way of securing the system. Since, without cryptanalysis, we will never know if our

system is secure or not. So, many researchers use this technique to check the security

level of the system.

Cryptography includes the main branches:

Symmetric Algorithms: Is the way for two parties having an encryption and decryp-

tion methods to communicate and exchange the data securely with each other, using

the same shared secret key. Symmetric methods were solely the base of cryptogra-

phy from antiquity until 1976. Data encryption and messages integrity check are still

done by symmetric ciphers.

10 Chapter 2. Transport Layer Security (TLS) Foundation

Asymmetric Algorithms (Public key): Whitfield Diffie, Martin Hellman, and

Ralph Merkle have introduced different types of encryptions methods in 1976 rather

than the symmetric key, the main difference is that the user has another key (Public-

key) and the private key that introduced in the symmetric key cryptography. We can

use asymmetric algorithm in digital signature, key establishment, and data encryp-

tion.

Cryptographic Protocols: The secure Internet communications applications can

be accomplished through the symmetric and asymmetric algorithms that considered

to be a building blocks. TLS is an example of cryptographic protocols that deals with

cryptographic algorithms [33].

Cryptographic Hash Function:

A hash function is a compressed fixed length output of a numerical value for an

arbitrary length of the same numerical input value.

The properties of cryptographic hash function is summarized in Pre-Image Re-

sistance, which prevents reversing the hash function process. Second Pre-Image Re-

sistance, which prevents to find the same hash result for different inputs -each input

value has its unique hash result. Collision Resistance, which makes it impossible to

have the same hash function result for two different inputs. Many hash functions can

be used to protect the password storage and data integrity check, such as message

Digest family (MD5), Secure Hash Function family (SHA) and Message Authentica-

tion Code (MAC) that provides authentication using a symmetric key cryptographic

technique, and many other hash functions [30].

2.3.1 Symmetric Encryption

The symmetric encryption has been used thousands of years ago. The case with most

early ciphers is to keep the method itself secure. For instance, the substitution cipher

method for encryption is replacing each alphabet letter with another one (replace

A to k, B to d, C to w). We reverse the process for decryption. Many approaches

were adopted over time. One approach in the 19th century for a cryptographer

Auguste Kerckhoffs: "A cryptosystem should be secure even if the attacker knows

everything about the system, except the secret key". Kerckhoffś principle makes

sense considering the following:

• To have useful encryption algorithm, others must share it. The greater the

number of people with access to the algorithm, the probability of falling the

algorithm in the enemy’s hands will increase too.

• It’s inconvenient to use a none-key single algorithm in large groups; since the

communication decryption is allowed by everyone.

• The design of a good encryption algorithm is very hard. The more inspec-

tion, observation, and examination for the algorithm, the more secure it can

be. Usually, cryptographers need many years of breaking attempts to make

2.3. TLS Cryptography 11

sure their cipher is secure. So, they recommend a conservative approach when

adopting new algorithms [30].

When the attacker couldn’t analyze or retrieve the plaintext, in this case, we

could say the encryption algorithm is good (secure) especially when the ciphertext

is randomly produced. For instance, the attacker could easily reveal the substitu-

tion cipher by inspecting the frequent letters, which as known in English language

that the frequent of some letters repeated more often than others, which leads the

attacker to reveal the plaintext by observing these frequent letters. So, obviously,

the simple letter substitution cipher is not a good algorithm. Otherwise, if we have

a good cipher, the attacker has to try all possible decryption keys, which know as

Brute-Force or exhaustive key search.

We conclude that, the key is the main factor of the ciphertext security. So, if

the selection of the key from a large keyspace and many iterations have been done

to break the encryption through large number of possible keys, then the cipher is

computationally secure.

2.3.2 Stream Ciphers

A keystream is producing an infinite stream of random data from a stream cipher.

For encryption, one byte of keystream is combined with one byte of plaintext using

XOR operation. Vice-versa for decryption process, which done XORing the cipher-

text with the same keystream byte as shown in FIGURE 2.1.

FIGURE 2.1: Stream Cipher process [34]

If the attacker couldn’t predict the position of each key-stream bytes, which key-

stream bytes are at which position?, then we say that the encryption process is se-

cure. So, it’s recommended to use the stream ciphers just once with the same key,

and that’s because the attacker can predict the plaintext at certain locations, practi-

cally; when we encrypt HTTP connection, all requests (e.g., protocol version, header

names) will be the same during the same connection.

Knowing the plaintext and having access to the correspondent ciphertext, will give

the attacker opportunity to reveal parts of key-stream, using the same information

will reveal other parts of ciphertext in the future; if the same key reused. To get rid

12 Chapter 2. Transport Layer Security (TLS) Foundation

of this issue, we could derive and use one time keys from long-term keys in stream

algorithms.

2.3.3 Block Ciphers

Block ciphers encrypt the whole blocks of data at a time. Most block ciphers nowa-

days use 16 bytes block size (128 bits). A block cipher takes some input data and

transforms it to random output. Using the same key will produces exactly the same

output for the same input combination. A small variation of input produces a large

variation of output.

Block cipher have some limitations. For instance, the produced output is always

the same for the same input (deterministic problem), which makes it vulnerable to

attacks. Also, the encryption of data has a limited length equal to the block size

length [30].

In practice, block cipher modes are encryption schemes that use the block cipher

to decrease the limitations and to add authentication for the process. Some crypto-

graphic primitives (e.g., MAC, pseudo-random generators, and hash functions) also

uses block ciphers as a base for the encryption process.

Advanced Encryption Standard (AES) that is available in different strengths (128,

192, and 256 bit) is the most popular block cipher [30].

2.3.4 Padding

Padding is the extra data to be added/appended to the plaintext when the block

size is less than 16-byte when using 128-bit AES, which is one of the approaches for

handling the encryption of data lengths that are smaller than the encryption block

size.

The padding must consist of a distinct data and the number of bytes to be dis-

carded must be known to the receiver. For instance, the padding length of TLS can

be found in the last byte of an encryption block, which determines the number of

padding bytes. All padding bytes shares the same value as the padding length byte.

Finally, the receiver has the ability to check the correctness of the padding.

FIGURE 2.2: TLS padding illustration [30]

The last byte of the data block contains the number of padding to be removed,

the receiver removes it first, then the indicated number of bytes will be removed too,

as shown in FIGURE 2.2.

2.4. Protocols Overview and Structure 13

2.4 Protocols Overview and Structure

SSL/TLS includes two layers of protocols as shown in FIGURE 2.3; TLS Handshake

protocol produces a cryptographic parameters that used by the secure channel. This

Handshake protocol takes place at a very first step of communication between the

client and server. This allows the negotiation about the protocol version between

peers, choose cryptographic algorithms and establishing shared secret keying mate-

rial. After completing the handshake process, the established keys are used to protect

the application layer traffic. Any error or failure of the Handshake protocol causing

the termination of the connection and sometimes an alert message precedes this ter-

mination. The Handshake protocol includes cipher specs, SSL Alert, and HTTP/FTP

to provide security for the second upper layer protocol; namely the Record Protocol,

which provides a secure session between two or more parties.

FIGURE 2.3: Structure of SSL/TLS Protocol [35]

TLS record protocol is a layered protocol. Each layer consists of messages that

include fields for description, length, and content. The record protocol (sender) is

responsible for data fragmentation (by segmenting it into a number of chunks), mes-

sage transition, besides optional data compression, applying/computing the MAC,

data encryption using corresponding MAC, and transmission of the results. On

the other side (receiver); the backward operation is needed for decrypt, verify, de-

compress, reassemble the received data, and finally deliver the data to higher-level

clients. Compression is disabled in SSLv3.0 and above [35] since it is vulnerable

to one of the brute force attack (CRIME attack). SSL/TLS record protocol creation

operations shown in FIGURE 2.4.

Fragmentation done to every received messages, the maximum allowed chunk

size is 214 [35] bytes. But when applying compression; the length of chunk is not

more than 1024 [35] bytes.

Compression Algorithms: Compression techniques used to decrease data size

without any loss of data.(e.g., LZ77, GZIP etc.)

Hash Algorithms: Hash functions provide integrity to data chunks (e.g., MD5,

SHA-1, SHA-256)

Encryption Algorithms: Data could be encrypted using symmetric stream or

block cipher techniques to create SSL payload. In the stream cipher encryption;

chunks and MAC are encrypted together. Before block cipher encryption padding

14 Chapter 2. Transport Layer Security (TLS) Foundation

FIGURE 2.4: Operations of SSL/TLS Record Protocol [36]

bits are added to both MAC and chunk. Table 2.2 shows the encryption algorithms

with their key sizes.

TABLE 2.2: (Stream & Block) Cipher Encryption [35]

Stream Cipher

Algorithms Key Sizes (bits)

RC4 40, 128

Block Cipher

Algorithms Key Sizes (bits)

3DES 168

AES 128, 192, 256

DES 56

Fortezza 80

IDEA 128

RC2 40

The Change Cipher Spec Protocol is the simplest protocol with one byte single mes-

sage holding the value 1, used to update the current state by copying the pending

state on it, to finally change the used cipher suite.

The Alert Protocol is used to announce the compressed and encrypted alert mes-

sages related to SSL protocol negotiation faults; to peer devices. Alert protocol mes-

sage is two bytes long; one byte includes two values: (one 1) for warning and (two

2) for fatal, the fatal terminates the specific connection directly. However, the other

connections during the same session continue working; but no new connections will

be established. The other byte contains specific alerts represented by specific code

that indicates the severity degree, as shown in Table 2.3. Three fields included in

the handshake protocol (type: represented in 1 byte, length: represented by 3 bytes,

2.4. Protocols Overview and Structure 15

TABLE 2.3: Alert Protocol Messages [35]

Code Alert Representations Type

0

close_notify
No more messages on this link to

receiver

1

10 unexpected_message Inappropriate message to receiver 2

20 bad_record_mac Incorrect MAC record to receiver 2

21

decryption_failed
Invalid decryption due to improper

chunk size

2

30

decompression_failure
Decompression fail due to improper

input

2

40

handshake_failure
Negotiation fail due to improper

security parameters set

2

41

no_certificate
Reply to no proper certificate is

available

1

42

bad_certificate
Corrupted certificate or contains

invalid signature

1

43 unsupported_certificate Sender certificate is unsupported 1

44 certificate_revoked Certificate was withdrawn by signer 1

45 certificate_expired Issued certificate is no longer valid 1

46

certificate_unknown

An uncertain problem causes

certificate to be inappropriate while

handling

1

47

illegal_parameter
Security parameter are inconsistent

with respect to their field in handshake

2

and content: greater than or equal to 0 bytes for associated parameter with the mes-

sage) code and security parameters for handshake messages shown in Table 2.5 and

Table 2.4. SSL Handshake Protocol: Before the connection is established by the record

TABLE 2.4: Cipher Suites for SSL [35]

Parameters Values

Key exchange algorithms RSA, Diffie-Hellman, Fortezza

Cipher algorithm RC4, RC2, DES, 3DES or IDEA,Fortezza

MAC algorithm MD5 or SHA

Cipher type Stream or Block

MAC size MD5(0 or 16 bytes) or SHA (20 bytes)

IV size Initialization vector size used in CBC

protocol; here comes the handshake protocol to allow client and server to exchange

the needed parameters (e.g., cipher suite, Identities, nonces) before start exchange

the application data as shown in FIGURE 2.5.

16 Chapter 2. Transport Layer Security (TLS) Foundation

FIGURE 2.5: Operations of Handshake Protocol [35]

2.5 TLS1.3 New Features

TLS1.3 came with major changes to TLS1.2, some of these key changes are:

• Adding 0-RTT mode to save round trip connection for application data, sacri-

ficing some security properties.

• Version negotiation was removed to increase compatibility for servers which

fail to implement version negotiation.

• Single new PSK exchange has replaced session resumption with and without

server-side state and PSK based cipher suites.

TLS1.3 Exchange Modes Diffie-Hellman (DHE), pre-shared key (PSK) exchange

and a combination of both; (DHE and PSK) are the three key exchange modes with

different properties that offers an elastic security guarantees for the TLS1.3. This

allows session resumption and early data transmission.

TLS1.3 offers three post-handshake mechanisms, post handshake client authen-

tication, and sending new session ticket (NST) by a PSK for subsequent resumption,

to cover the traffic key updates. The communication between parties must be docu-

mented and both parties need to agree on.

2.5. TLS1.3 New Features 17

TABLE 2.5: SSL Handshake Messages [35]

Codes Messages Type Parameters

0 hello_request Void

1

client_hello
version, random_no, session_id,

cipher_suite, compression_tech

2

sever_hello
version, random_no, session_id,

cipher_suite, compression_tech

11 certificate X.509 certificates chain

12 server_key_exchange msg_signature, public_parameters

13 certificate_request cert_authorities, cert_type

14 server_done Void

 client_key_exchange msg_signature, public_parameters

15 certificate_verify cert_signature

20 finished MD5_hash, SHA_hash

18

Chapter 3

Attacks on TLS

TLS has been vulnerable to several majors attacks, especially on the most common used

ciphers and its modes of operations. For instance, RC4 and AES-CBC suffered from serious

attacks; since a combination of both is widely used in TLS context. More about the major

attacks on TLS can be found in [37].

According to an old saying to the US National Security Agency "Attacks always get

better; they never get worse", therefore the attacks will never stop.

As there are many attacks on TLS protocol, there are a lot of security solutions

recommendation that have been proposed by IETF [38], the FIGURE 3.1 shows the attacks

and analysis line for TLS protocol followed by number of TLS attacks:

FIGURE 3.1: Attacks and Analysis Line on TLS protocol [39]

3.0.1 SSL Stripping

Stripping attack introduced by Moxie Marlinspike in 2009 [40]. This attack prevents the use

of SSL/TLS, by exploiting and modifying unencrypted protocols, such as HTML and

HTTP that requests the use of TLS.

Stripping attack has derived from downgrade attack, which is more general. These

attacks affects; only if the user starts accessing web servers using HTTP. The HTTP Strict

Transport Security (HSTS) specification was subsequently developed to mitigate these

attacks.

Chapter 3. Attacks on TLS 19

3.0.2 STARTTLS Command Injection Attack

This attack targets the transmitted packets between unprotected and TLS protected

traffic. Many application level commands (e.g., STARTTLS) used by IETF applica-

tion protocols to upgrade the cleartext connection in order to use TLS. The attackers

exploited a flaw in STARTTLS, which is retaining a pipelined STARTTLS command

with an application layer input buffer. These commands received prior to TLS ne-

gotiation and executed after TLS negotiation. To solve this problem, it’s required to

keep the application level command input buffer to be empty before TLS negotia-

tion. Well, this flaw does not affect the TLS protocol directly since it’s considered to

reside in the application layer code.

As STARTTLS is vulnerable to downgrade attacks, other similar mechanisms are

vulnerable too. It is a simple mission for the attackers; they have just to remove

the STARTTLS indication from the HTTP/unprotected request. Adding HSTS-like

solutions will mitigate the attack [41].

3.0.3 BEAST

The BEAST attack targets TLS1.0 and earlier versions. BEAST has violated origin

policy constraints for the cipher block chaining (CBC), which is the predictable Ini-

tialization Vector (IV). To this end, Duong and Rizzo exploit this known weakness in

IV construction in 2011. They predict the IV to decrypt small parts of a packet (HTTP

cookies) when it’s run over the TLS protocol. The problem was solved in TLS1.1 [41],

[42]. Duong and Rizzo, have proved that the attacks get better with time, and we

have to seriously deal with any small weaknesses (e.g., IV weaknesses) and do not

ignore them since they could grow big eventually.

To make BEAST attack works, the attackers have effectively reduced the CBC

mode to Electronic Code Book (ECB) mode. ECB splits input data into blocks and

individually encrypts each block. The problem with this approach is that; the output

data of a block is always the same for the same encrypted block. This facilitates the

attacker ’s job and makes it possible to guess the plaintext, as follows:

1. The attacker monitors the size of encrypted blocks, which depends on the en-

crypted algorithm, for example, 16 bytes for AES-128.

2. The attacker submits 16 bytes of plaintext for encryption since he could guess

the whole block at once, in addition, any difference in any bit of input will

affect all output bits.

3. The attacker monitors the encrypted block and compare it to the ciphertext in

the first step if there is no difference, then we have the first correct guess, or

the attacker goes back to the second step.

Note: The attacker can guess one block at a time. So, the attacker needs to make 2127

guesses on average in order to guess 16 bytes only.

20 Chapter 3. Attacks on TLS

In order to hide patterns in the ciphertext. The CBC masks every message before

encryption using IV, which is differentiate it from ECB. Moreover, the ciphertext

output is not always the same for the same input block. Therefore, the attacker

couldn’t guess the plaintext like ECB.

To have an effective IV, we need to make it unpredictable for each message. Many

unfeasible solutions have been proposed, but the practical one in CBC is to use only

one block of random data at the beginning, then the output of the current block used

as input for the next block, which also known by chaining. The chaining approach is

safe, if and only if the attacker is not able to monitor the encrypted data. else, if the

attacker could reach one encrypted block, so he will have the IV for the next. TLS 1.0

and earlier deals with the entire connection as a single message and use the random

IV for the first TLS record. All following records use the last encryption block as

their IV. The attacker could see all the encrypted data; so he knows the IVs from the

second one and above. TLS 1.1 and 1.2 do not suffer from this weakness since they

use per-record IVs.

Finally, the protocol is still vulnerable to a blockwise chosen plaintext attack.

CBC effectively downgrade to EBC when the IV is predictable. FIGURE 3.2 shows

the attack against CBC with predictable IV. The figure includes three encrypted

blocks; the browser sent two of these blocks, while the third one has been sent by

the attacker through the browser.

FIGURE 3.2: BEAST attack against CBC with predictable IV [30]

The IV of the first block is unknown, so the attacker targets the second block to

reveal its content. The attacker knows the I V2 after seeing the first block. The same

goes with I V3 after seeing the second block. Moreover, the second block C2 is also

known to the attacker.

The attacker now has seen the first two blocks, the attacker keeps observing the

encrypted version on the wire. The IVs are all known to the attacker, so the effect

of IVs is eliminated from attacker guesses. When the attacker complete guessing is

Chapter 3. Attacks on TLS 21

successful, then the C3 (an encrypted version of the guess) will be the same as C2

(the encrypted version of the secret).

3.0.4 Padding Oracle Attacks

The MAC-then-encrypt design is used in all versions of the TLS protocol, which

leads to the padding oracle attacks [43]. The Lucky Thirteen attack [3] and a timing

side-channel attack that helps the attacker to decrypt arbitrary ciphertext are sam-

ples of padding oracle attacks.

We can mitigate the Lucky Thirteen attack using authenticated encryption, such

as AES-GCM [44] or using encrypt-then-MAC [45] instead of MAC-then-encrypt.

The latest version of the padding oracle attack is POODLE attack [46] on SSL 3.0, no

timing information used in this attack.

3.0.5 Attacks on RC4

The RC4 algorithm [47] has been firstly used with SSL then TLS for years. RC4 suf-

fered from different kinds of cryptographic weaknesses for a long time (e.g., [48], [49],

[50]). The biases property in RC4 keystream is one of the weak points that attackers

exploit to retrieve the plaintexts that have been encrypted many times [41], as shown

in cryptanalysis results [51].

According to the result of 2014, which inform us that most of the above attacks

are practically exploitable. We conclude that RC4 doesn’t provide an adequate level

of security for TLS, The link1 includes more details.

3.0.6 Compression Attacks: CRIME, TIME, and BREACH

Active attacker is able to decrypt ciphertext (HTTP cookies) using CRIME attack [52].

This attack happens when using compression with TLS level. Both TIME [53] and

BREACH [54] attacks decrypt the secret data passed in the HTTP response using

HTTP level compression. Most attackers prefer the use of HTTP message body com-

pression more than compression at TLS level.

In order to mitigate TIME attack, we just need to disable TLS compression. No

information available about BREACH attack mitigations at TLS protocol level, there-

fore, application level mitigations are needed [54]. For instance, HTTP implemen-

tations that use Cross-Site Request Forgery (CSRF) tokens will need to randomize

them.

3.0.7 Certificate and RSA-Related Attacks

When using TLS with RSA certificate many practical attacks have shown up, the

most used attacks are Bleichenbacher [10] and Klima [13]. Bleichenbacher has been

mitigated in TLS 1.0, while Klima that relies on a version-check oracle in TLS 1.1.

1
https://tools.ietf.org/html/draft-ietf-tls-prohibiting-rc4-01.

22 Chapter 3. Attacks on TLS

The exploitable timing issues, such as Brumley [55] are often involved when us-

ing RSA certificates. Unless they are explicitly eliminated by the implementation.

Many vulnerabilities have been uncovered in different TLS libraries related to cer-

tificate validation; using the certificate fuzzing tool namely Brubaker [56].

3.0.8 Theft of RSA Private Keys

Any encrypted sessions that were initiated by any server using TLS with most non-

Diffie-Hellman cipher suites can be easily decrypted by obtaining and using the pri-

vate key for that server. The popular Wireshark network sniffer uses this technique

in order to inspect TLS-protected connection.

A large-scale monitoring [57] for certain servers, including stealing private keys,

active or passive wiretaps (eavesdrop), and traffic analysis were used as part of per-

vasive monitoring. The mitigations for such attacks through better protecting the

private key, for instance, using hardware solutions or operating system protections.

Moreover, using cipher suites for forward secrecy, which prevent the passive attack-

ers of exposing the past or future sessions, even if they could reveal the private key.

3.0.9 Diffie-Hellman Parameters

The Cross-Protocol attack [58] exploits the interactions between the different cipher

suites. Specifically, when the client incorrectly interprets the signed Elliptic Curve

Diffie-Hellman ECDH key parameters as valid plain Diffie-Hellman.

The adversary could impersonate the server and use it as an oracle that pro-

vides signed parameters, then start sending these signed valid parameters to the

victim clients. In order to mitigate Cross-Protocol attack, we can use predefined

DHE groups [59].

Additionally, the client has to properly verify any received parameters, or he

will be vulnerable to MITM attack. It is unfortunate that, the TLS protocol don’t

offer this verification, more information about analogous information for IPsec in

RFC6989 [60].

3.0.10 Renegotiation

SSL and TLS renegotiation are vulnerable to an attack in which the attacker creates

a TLS connection with the server, sends some content data to the server, at the same

time; the attacker creates a new TLS connection with the client, who sends his ini-

tial TLS handshake to the server, which treats it as a renegotiation, considering the

initially transmitted data by the attacker as a subsequent from the real client. The

attacks and it’s resolved found in RFC5746 [61].

23

Chapter 4

Tamarin Prover for Security

Protocols Modeling

There are many ways to verify security protocols. In this thesis, we focus on au- tomatic

verification of security protocols in symbolic models of cryptography. Ex- tended the scope

of automatic verification; to cover more practical security problems has been subjected to

much research. However, it is impossible to verify all security protocols. Since (in general)

there are many requests from the server at the same time, therefore verifying all security

properties needs more time, so we decided to focus on verifying PFS and preventing the

replay attacks in our thesis.

We use Tamarin prover tool [62] for automatic verification. Tamarin supports

automatic falsification and verification of protocols, benefit from loops and non-

monotonic states, and of protocols that use Diffie-Hellman exponentiation to fulfill

resilience against adversaries.

This chapter explains the automated analysis for some security protocols using

constraint-reduction rules [29].

4.1 Automatic Protocol Analysis

The constraint solving algorithms is the main idea that automated analysis is based on. It

consists of two components, on a high level. Firstly, a constraint-reduction strategy, which

leads to a possibly infinite search tree. Secondly, a search strategy that used to search the

tree for a solved constraint system.

Tamarin prover tool is used to implement the constraint solving algorithms based on

constraint-reduction rules. Tamarin provides automatic and interactive interface modes.

Iterative deepening search strategy is used in the automatic mode to se- lect the next

constraint-reduction rule to be applied (command line interface). The Graphical User

Interface (GUI) is used in the interactive mode, which allows the user to determine

interactively both the search and the constraint-reduction strategy as shown in FIGURE 4.1.

24 Chapter 4. Tamarin Prover for Security Protocols Modeling

FIGURE 4.1: Graphical user interface and Command line interface

4.2 Constraint Solving Algorithms

A constraint-reduction strategy is a partial function (r) from constraint systems Γ

(where Γ is a finite set of constraints, r is a partial function that represents the

constraint-reduction strategy) to finite sets of constraint systems that meet the fol-

lowing conditions:

1. The constraint-reduction relation {(Γ, r (Γ))|Γ ∈ dom(r)} is correct,

complete, and well-formed.

2. Every well-formed constraint system not in the domain of r has a non-empty

set of solutions.

Certainly, the function (r) minimizes constraint systems in its domain to fixed/finite

sets of constraint systems that cover the same set of solutions, while any constraint

systems out of its domain will be marked as solved [63].

4.3. The Tamarin Prover 25

4.3 The Tamarin Prover

The Tamarin prover is one of the automatic verification tools, it supports equational

theories, which takes into account the cryptographic operators, alongside with their

properties and the adversary’s ability to deduce messages, in order to modeling

Diffie-Hellman, multisets [63] and bilinear pairings.

To avoid undecidable automatic verification that comes out from theoretical re-

sults, we need to bind at least two out of the following three quantities:

• Number of messages.

• Number of sessions.

• Number of nonces.

Thus, Tamarin prover could also use automatic verification without bounding any

of the above three quantities, which known as a symbolic backward implementa-

tion with complete proofs. But in this case, the implementation process may not be

terminated because of the infinite number of messages, sessions, and nonces.

4.3.1 Formalism

This section includes the underlying formalism for Tamarin prover tool. We use

the equational theory to represent cryptographic messages using Tamarin, then we

model protocol execution by formalizing the labeled multiset rewriting system. Lastly,

we specify the security properties by Tamarin [29].

4.3.1.1 Messages

An order-sorted term algebra used by Tamarin in modeling cryptographic mes-

sages. Tamarin defines two sub-sort messages; fresh messages (nonces) that rep-

resent freshly generated values, and pub messages that represent publicly known

values. A signature defines the term algebra, which specifies the function symbols

used in the definition of terms:

Definition 1 (Signature): A signature Σ is a set of function symbols, each hav-
ing an arity n ≥ 0. The arity 0 function symbols (n=0) are called constants,

where arity means the number of variables in the function, for instance,

fst(pair(x,y))=x has an arity of two variables x and y, which means (n=2).

Follows an example of the operators used for modeling of symmetric encryp-

tion/decryption:

Example: The signature Σex = {senc, sdec} defines the binary function sym-

bols used for modeling symmetric encryption and decryption. Together with a set

of variables, we can now inductively define the term algebra, the set of all possible

terms over a signature Σ.

Definition 2 (Term Algebra): Let X be a set of variables (disjoint from Σ). The

term algebra over Σ, denoted as TΣ (X), is the least set such that:

26 Chapter 4. Tamarin Prover for Security Protocols Modeling

• X ⊆ TΣ (X)

• t1, t2, ..., tn ∈ TΣ (X) and f ∈ Σ with arity n ⇒ f (t1, t2 , ..., tn) ∈ TΣ (X)

Cryptographic messages of Tamarin can be defined as follows (i.e., Σmsg is concrete

signature):

Definition 3 (Message): A message is a term in TΣ msg(X) where the signature is

defined as Σmsg = A ∪ F ∪ F unc ∪ {pair, f st, snd} [29].

• X : set of variables

• A: set of agent names (∈ pub)

• F: set of fresh values (∈ fresh)

• Func: set of user-defined functions (e.g., hashing)

• pair(t1, t2): pairing; t1 , t2 , ..., tn are terms

• fst: first element of a pair

• snd: second element of a pair

By default, the function symbols for pairing can be found in the signature Σmsg.

While any other functions used by the protocol are elements of Func.

Example: Modeling symmetric encryption includes adding the corresponding

function symbols to the set of user-defined functions:

senc, sdec ∈ Func. With this definition, the terms t1 := sdec(senc(x,y), y)

and t2 := x are messages in TΣ msg(X) (sdec and senc represents symmetric

decryption and symmetric encryption respectively).

All algebra in the above definitions, are called free algebra, which means; each

term is interpreted syntactically. Briefly, t1 and t2 are syntactically different and

would not be considered the same. then an equational theory is used to clarify the

semantic equivalence of messages.

Definition 4 (Equational Theory): An equational theory is a set of equations, where
an equation is a pair of terms, t, t’ ∈ TΣ (X), written as t=t’.

The equational theory defines an equivalence relation between the terms in TΣ (X),

the term algebra then partitioned into equivalence classes. The resulting quotient al-
gebra TΣ (X)|=E interprets each term t by its equivalence class [t]E .

Example: The equational theory of pairing consists of the following equations:

• fst(pair(x,y)) = x, fst means, we need to take the first value of the

pair(x,y) since x is the first value and y is the second value.

• snd(pair(x,y)) = y

4.3. The Tamarin Prover 27

The equational theory defines the meaning of the functions, while the term algebra

defines the message structure in terms of function symbols.

Example: In the equational theory, containing the equation sdec(senc(x,y),y)

= x, the messages t1 and t2 would be in the same equivalence class, and consid-

ered semantically equivalent. Much more of Tamarin’s cryptographic messages can

be found in Meier ’s PhD thesis [26].

4.3.1.2 Supported Verification Problems

Tamarin verifies and analyzes the validity claims of trace formulas for protocols that

use the public networks, which have active and passive attackers. Specifically, a

Dolev-Yao style adversary who has the ability to control these networks. This analysis

is performed modulo an equational theory, modeling the semantics of the employed

cryptographic algorithms.

The supported equational theories combined from:

• An arbitrary subterm-convergent rewriting theory.

• Modeling Diffie-Hellman exponentiation.

• The equations modeling multiset union.

• The equations modeling bilinear pairing.

In order to simplify the verification problems, Tamarin allows restricting the set

of considered traces using axioms that implements rules with inequality checks,

such as: Firstly, add InEq(t,s) to the rules, which needs to have two different terms

t and s. Secondly, filtering the traces where t and s are instantiated to the same

message, like ∀ x i. I nEq(x, x) @i ⇒ ⊥. (where InEq(x,x) represents

two

different values for each x; they are not equal. ⊥ means

false)

The protocol, the considered equational theory, and the expected properties jointly

as security protocol theory; will be specified according to the input given to the

Tamarin prover. Formally, a security protocol theory is a six-tuple

T = (Σ, E, P, α, ϕ, X) the description follows:

• Σ: Specifies the functions for constructing cryptographic messages.

• E (equational theory): specifies the semantics of the functions in Σ.

• P: specifies a set of protocol rules.

• α (the axioms of T): Specifies sequences of closed trace formulas α.

• ϕ (the validity claims of T): Specifies sequences of closed trace formula ϕ.

• X (the satisfiability claims of T): Specifies sequences of closed trace formula

X [26].

mailto:@i

28 Chapter 4. Tamarin Prover for Security Protocols Modeling

X

As shown in the equations below, the security protocol theory T is true if its valid-
ity and satisfiability claims are achieved for the traces of P ∪ M DΣ satisfying the

axioms:

P ∪ M DΣ ∀E (∧α∈ set(α~) α) ⇒ f or each ϕ ∈ set(ϕ~)

In this equation: A set of protocol rules (P) alongside with message deduction rule

M DΣ achieves the validity claims ϕ of the security protocol theory (T).

P ∪ M DΣ ∃E (∧α∈ set(α~)α) ∧ X f or each X ∈ set(~)

In this equation: A set of protocol roles (P) alongside with message deduction rule

M DΣ achieves the satisfiability claims X of the security protocol theory (T).

4.3.1.3 Execution and State

Tamarin uses a labeled multiset rewriting system for protocol execution. Moreover,

the state transitions are modeled by multiset rewriting rules. The state of that tran-

sition system are multisets of facts.

Definition 5 (Fact). All arguments of facts are terms in TΣ (X). Facts are the elements

of the multisets which represent the state of the transition system.

Tamarin have three types of facts In, Out and Fr, we use Out facts to model the

adversary knowledge and messages on the network. In facts used to model a party

receiving a message that controlled by Dolev-Yao from the untrusted network, and

the fresh (Fr) facts used to model nonces, which are very important facts to keep

the security of information.

Example: The fact K(x) means that the adversary knows the term x. The fact Out(x)

means that the term x was sent across the network by a protocol participant, ready to be

learned by the adversary. The fact In(x) indicates that x has been seen by the adversary

and is ready to be received by an agent.

Facts also describe the protocol participant’s state. The arguments of the state

facts can be considered as the knowledge of the participant. A common notation is

used for the names of state facts, as shown in the following example:

Example: The fact St_A_3(a, sk) denotes that agent a, executing the protocol in

role A, is in it’s third internal state and knows the key sk.

A statement can be seen as one fact. Depicting just a small part of the state, while

multiset specifies the whole state of such facts.

Linear versus persistent facts:

linear facts appear in just one state, and not the other. They could consumed by

rules as well as they are produced by rules.

Persistent facts denoted by the prefix (!) and it never removed from the state. Def-

inition 6 (Multiset and State). A multiset is a set where elements may occur more than

once (Elements have a multiplicity). The denoted operations on multisets with a # sign next

to the usual set operator. A state is a multiset of facts, meaning that the same fact may occur

multiple times in a state.

4.3. The Tamarin Prover 29

Four types of facts consist of the state of a protocol execution:

• State facts name (St_A_4(a, sk))

• Adversary knowledge facts (K(sk)); which means the adversary knows the

session key (sk).

• Messages on the network facts (Out(sk)); which means sending the (sk) to

an unsecured network.

• Fresh facts (Fr(na)); fresh nonces.

Example: A state fact describing two agents executing a protocol, each in the first

state of the corresponding role, defined as follows:

Si = [St_A_1(a,sk,b), St_B_1(b,sk,a), K(sk), Fr(na), K(n)]

Each agent knows the name and the shared key sk of the other agent. There is also

a fresh fact in the state, and the adversary knows sk as well as the value of a unique

nonce n, which is the same as na but it is not fresh anymore when it is revealed by

the adversary.

Each step in the protocol execution corresponds to a change of the state, which

called state transition that represented by a multiset rewriting rule, which consists

of a left-hand side (l), namely premise, and a right-hand side (r), namely conclusion,

and a label (a) as well.

Definition 7 (Labeled Multiset Rewriting). A labeled multiset rewriting rule is

a triple (l), (a), (r), each of which is a multiset of facts. We write such a rule using either the

short, in-line notation l − [a] → r, or in the form of a deduction

rule:

 l1 l2 ... lk

a
r1 r2 ... rm

where l1 , l2 , ..., lk are the facts of the premise, and r1 , r2, ..., rm are the facts of the conclu-

sion, and (a) is the action fact [29]. We can also rewrite the above equation in a form:

l1 , l2 , ..., lk − [a] → r1, r2, ..., rm .

4.3.2 Protocols Modeling

The execution of security protocols could be defined in many ways, according to

the used tool. Using Tamarin, the user has no limitations of modeling the security

protocols in the way he/she choose, since there is no pre-defined protocol concept.

In this section, we present some of the previous Tamarin models of TLS security

protocol. We have examined and verified these models, which helps us in updating

and building our own models accordingly, to achieve our goal of proving PFS and

preventing replay attacks.

To start our protocol Modeling we need to consider the following:

• Our models includes three main factors; the client, server and the adversary

that is able to modify, inject and delete the messages on the network repre-

sented by Dolev-Yao adversary.

30 Chapter 4. Tamarin Prover for Security Protocols Modeling

• We write our security properties models using Tamarin tool with a standard

format, which needs to choose a name for the theory in the first line for ev-

ery security properties file in Tamarin, preceded by the keyword theory (e.g.

theory TLSsecurity) after that we use begin keyword to indicate the start of

Tamarin security code, then we translate the security properties by construct-

ing rules for initializing the client, the server and the handshake process in-

cluding client hello, server hello and Finished messages ...etc.

Then we close our Tamrin file using end keyword as shown in FIGURE 4.2.

• We declare the cryptographic primitives used by the protocol, the multiset

rewriting rules that models the protocol, then, writing the security properties

lemmas to be proven or refuted/disproven.

• Finally, we execute the security properties theory using Tamarin tool to get our

results.

FIGURE 4.2: Part of PSK resumption Handshake

A set of traces is defined in Tamarin using first-order logic formulas over time-points

and action facts. The syntax for specifying security properties is defined as follows:

• All for universal quantification, temporal variables are prefixed with #

• Ex for existential quantification, temporal variables are prefixed with #

• ==> for implication, & for conjunction

• | for disjunction

• not for negation

• f @ i for action constraints, the sort prefix for the temporal variable ‘i’ is op-

tional

• i < j for temporal ordering, the sort prefix for the temporal variables ‘i’ and ‘j’

is optional (i and j for temporal variables - could be any variable)

4.3. The Tamarin Prover 31

• #i = #j for an equality between temporal variables ‘i’ and ‘j’

• x = y for an equality between message variables ‘x’ and ‘y’ (x and y for message

variables - could be any variable)

Example of Protocol Modeling - NAXOS

NAXOS models the DHE handshake protocol that shown in FIGURE 4.3

FIGURE 4.3: Diffie-Hellman handshake protocol

Starting of modeling a Public Key Infrastructure (PKI), no pre-defined notation

in Tamarin for the PKI. Accordingly, we can model a pre-distributed PKI with an

asymmetric key for each party using a single rule to generate a key for a party. The

identity, the private and public keys are stored in the state as facts, allowing protocol

rules to restore them. (Pk fact denotes public key, Ltk fact denotes long-term private

key, ~x: denotes a fresh value of variable x, $A: denotes the identity of an agent A).

The rule Generate_key_pair: To generate client’s public and private keys, the

client generates his key-share, then sends it to the server as FIGURE 4.3 show in step

(1).

rule Generate_key_pair:

[Fr(~x)]

⇒
[!Pk($A,pk(~x))

, Out(pk(~x))

, !Ltk($A,~x)

]

Some protocols depend on algebraic properties of the key pairs. In many DHE-

based protocols; gx: is a public key, x: is a private key, it enables exploiting the

commutativity of the exponents to establish the keys, as shown in the following

rule:

rule Generate_DH_key_pair:

[Fr(~x)]

⇒ [!Pk($A,’g’^~x) , Out(’g’^~x) , !Ltk($A,~x)]

32 Chapter 4. Tamarin Prover for Security Protocols Modeling

4.3.3 Modeling of Protocol steps

The protocol steps that user/agent able to perform are, receives a message, responds

by sending a message, or starting a session.

Modeling the responder role is simpler than the initiator role and can be done in

one rule. It uses a DHE exponentiation and two hash functions (h1 , h2 that must be

declared by the user), the model for the Naxos responder role looks like:

rule NaxosR_attempt1:

[In(X),

Fr(~eskR),

!Ltk($R, lkR)

]

⇒
[

Out(’g’^h1(< ~eskR, lkR >))

]

~eskR: fresh value, $R: Responder , kR: a session Key, lkR:Long-term private key.

The responder also computes a session key kR into the action state:

rule NaxosR_attempt2:

[In(X),

Fr(~eskR),

!Ltk($R, lkR)

]

-[SessionKey($R, kR)]->

[Out(’g’^h1(< ~eskR, lkR >))]

To specify the communication of kR without decreasing the reliability and to avoid

duplication and mismatches; we use binding to have the following:

rule NaxosR_attempt3:

let

exR = h1(< ~eskR, lkR >)

hkr = ’g’^exR

kR = h2(< pkI^exR, X^lkR, X^exR, $I, $R >)

in

[In(X),

Fr(~eskR),

Fr(~tid),

!Ltk($R, lkR),

!Pk($I, pkI)]

-[SessionKey(~tid, $R, $I, kR)]->

[Out(hkr)]

~tid: Thread identifier, $pkI: The public key of the communication partner, I:

Communication partner.

4.3. The Tamarin Prover 33

The model for Naxos initiator role sends a message and wait for the response.

While waiting, other agents might also perform steps. Accordingly, modeling the

initiator using two rules.

First rule; sending a message:

rule NaxosI_1_attempt1:

let

exI = h1(<~eskI, ~lkI >)

hkI = ’g’^exI

in

[Fr(~eskI),

!Ltk($I, ~lkI)

]

–>

[Out(hkI)]

While the initiator is waiting for the response; we need to consider receiving this

message by the responder, which can be represented by storing the initiator ’s thread

(sending a message at the first rule) in the state face transition. This allows us to

return back and complete the steps where we have left off. The optimization of the

sending a message rule including the state fact thread must be as follows:

rule NaxosI_1:

let

exI = h1(<~eskI, ~lkI >)

hkI = ’g’^exI

in

[Fr(~eskI),

!Ltk($I, ~lkI)

]

–>

[Init_1(~tid, $I, $R, ~lkI, ~eskI),

Out(hkI)]

The second initiator rule:

rule NaxosI_2:

let

exI = h1(<~eskI, ~lkI >)

kI = h2(< Y^ lkI, pkR^exI, Y^exI, $I, $R >)

in

[Init_1(~tid, $I, $R,~lkI , eskI),

!Pk($R, pkR),

In(Y)]

-[SessionKey(~tid, $I, $R, kI)]->

[]

34 Chapter 4. Tamarin Prover for Security Protocols Modeling

Y: a message to be received from the network.

The output is not needed in this case, since there are no further steps in the protocol.

The same agent identities and the exponent for an initiator exI computed in the first

step will be used in this step. At last, the complete example; including initiator and

responder will look like [62]:

theory Naxos

begin

builtins: diffie-hellman

functions: h1/1

functions: h2/1

rule Generate_DH_key_pair:

[Fr(~x)]

⇒
[!Pk($A,’g’^~x)

, Out(’g’^~x)

, !Ltk($A,~x)

]

rule NaxosR:

let

exR = h1(< ~eskR, ~lkR >)

hkr = ’g’^exR

kR = h2(< pkI^exR, X^~lkR, X^exR, $I, $R >)

in

[In(X),

Fr(~eskR),

Fr(~tid),

!Ltk($R, ~lkR),

!Pk($I, pkI)]

-[SessionKey(~tid, $R, $I, kR)]->

[Out(hkr)]

rule NaxosI_1:

let

exI = h1(<~eskI, ~lkI >)

hkI = ’g’^exI

in

[Fr(~eskI),

Fr(~tid),

!Ltk($I, ~lkI)]

–>

[Init_1(~tid, $I, $R, ~lkI, ~eskI), Out(hkI)]

rule NaxosI_2:

let

continue ...

4.3. The Tamarin Prover 35

...continue

exI = h1(<~eskI, ~lkI >)

kI = h2(< Y^~lkI, pkR^exI, Y^exI, $I, $R >)

in

[Init_1(~tid, $I, $R,~lkI , ~eskI),

!Pk($R, pkR), In(Y)]

-[SessionKey(~tid, $I, $R, kI)]->

[]

end.

4.3.4 Property Specification

This section presents how to specify trace and observational equivalence properties

of the protocol, depending on action facts in the model.

4.3.4.1 Trace Properties

The system state of Tamarin is a multiset of facts with an empty multiset as an initial

system state. The rules define how the system can make a transition to a new state.

The protocol’s behavior is explained by the action facts.

Each rule contains three parts, left and right-hand sides, and the action facts. We

replace the left-hand side by the right-hand side when it is already contained in the

current state, in this case; the rule can be applied to a state fact. Appending the ac-

tion facts to the trace in order to record the application of the rule in the trace. The

explanation is in the following example.

rule fictitious:

[Pre(x), Fr(~n)]

-[Act1(~n), Act2(x)]->

[Out(<x,~n>)]

The rule consumes the facts Pre(x) and Fr(~n) and produces the fact Out(<x,~n>).

It is labeled with the actions Act1(~n) and Act2(x). We can apply the rule if we

found two arguments matching the x and ~n variables in the Pre and Fr facts.

When applying this rule, x and ~n are instantiated with the matched values and the

state transition is labeled with the instantiations of Act1(~n) and Act2(x). The

time of occurring for these two instantiations is at the same time-point.

We can use action fact symbols in formulas. There are limited terms of these

facts and allowed to be built only from quantified variables, free function symbols

and public constants. Excluding equation’s function symbols. The most importantly,

is to guard all variables or the Tamarin tool will produce an error.

Guardedness: Check of occurring the universally quantified variables directly

after a quantifier in an active constraint, the same goes with existentially quantified

variables. For outermost logical operator inside the quantifier are an implication

universally quantified variables and conjunction with the existentially quantified

36 Chapter 4. Tamarin Prover for Security Protocols Modeling

variable. Using parentheses is recommended, especially with a precedence of log-

ical connectives, but keeping the standard precedence. The highest priority is for

negation, then conjunction, then disjunction and then implication.

To verify a specific property for the protocol, we use Lemma followed by the

property name and a guarded first-order formula. This means that the property

must hold for all traces of the protocol. For example, the freshness of the value (~n)

is distinct in all applications of the rule, or we identify the same instance by time-

point for the same fresh value that appears twice, we write:

lemma distinct_nonces:

"All n #i #j. Act1(n)@i & Act1(n)@j ==> #i=#j"

or equivalently

lemma distinct_nonces:

all-traces

” All n #i #j. Act1(n)@i & Act1(n)@j ==> #i=#j"

To express that there exists a trace for which the property hold, we add (exists-trace

word) after the name and before the property. For example, the following lemma is

true if and only if the preceding lemma is false [62]:

lemma distinct_nonces:

exists-trace

"not All n #i #j. Act1(n)@i & Act1(n)@j ==> #i=#j".

4.3.5 Security Properties

In this section, we are including some security properties from Tamarin manual to

focus on and to adapt them according to our model. Secrecy and authentication are

our interesting properties.

4.3.5.1 Secrecy

Secrecy is the term property that unknown to the adversary. For instance, secrecy of

a term t is satisfied for agent A, if the term t is not compromised by the adversary

or its communicated party, or it’s even unknown to the adversary. The conventional

secrecy claim is an action fact includes the agent name and the term that is claimed

to be secret. Using this structure, any role can prove secrecy of any claimed term. We

use lemmas to prove secrecy claims made by a role as shown in the below example:

lemma example_role_secrecy: "All T tag x

#i. Example_Role_Claim_Secret(T, tag, x)

@i

==> (not (Ex #j. K(x) @j)

|(Ex A#j. Rev(A) @j & Honest(A) @i))"

mailto:@i
mailto:@j
mailto:@i
mailto:@j
mailto:@i
mailto:@j
mailto:@i
mailto:@j
mailto:@j
mailto:@i

4.3. The Tamarin Prover 37

4.3.5.2 Perfect Forward Secrecy PFS

Perfect Forward Secrecy (PFS) is a strong security property that keeps the estab-

lished session keys between parties secure even if the long-term secret keys are ex-

posed [31]. This prevents the eavesdropper from revealing the secret data of past

communications [64].

To differentiate between secrecy and perfect forward secrecy we need to consider

the following two examples:

lemma secrecy:

"All x #i.

Secret(x) @i ==>

not (Ex #j. K(x)@j)

| (Ex B #r. Reveal(B)@r & Honest(B) @i)"

This lemma indicates that the agents are supposed to be honest whenever the mes-

sage x is kept secret and not been compromised. We also can read it as follows: The

lemma states that whenever a secret action Secret(x) occurs at timepoint i, the

adversary does not know x or an agent claimed to be honest at time point i has

been compromised at a timepoint r.

At a timepoint i the occurring of a secret action Secret(x) prevents the adver-

sary of knowing x, or the compromisation is done at time point r where it should

be honest at time point i according to agent’s claim.

A PFS is a stronger secrecy property, which requires that a Secret action labeled

messages remain secret before compromisation.

lemma secrecy_PFS:

"All x #i.

Secret(x) @i ==>

not (Ex #j. K(x)@j)

| (Ex B #r. Reveal(B)@r & Honest(B) @i & r < i)"

The following example (one message protocol) distinguish between secrecy and

PFS. To send an encrypted message between two agents A and B. An agent A en-

crypts and sends a message to an agent B; using agent B public key. The secrecy are

claimed by both agents but only agent A claims the secrecy of the message. Two

action facts roles are applied Role (’A’) and Role (’B’) for A and B agent’s roles.

The PFS claim is not applied to agent A. This can be reflected by negating the

PFS property using an exists-trace lemma [62].

theory secrecy_template

begin

builtins: asymmetric-encryption

/* Protocol formalization for:

1. A -> B: A,napk(B)

*/

continue ...

mailto:@i
mailto:@j
mailto:@r
mailto:@i
mailto:@i
mailto:@j
mailto:@r
mailto:@i

38 Chapter 4. Tamarin Prover for Security Protocols Modeling

continue ...

// Public key infrastructure

rule Register_pk:

[Fr(~ltkA)]

–>

[... ... !Ltk($A, ~ltkA)

, !Pk($A, pk(~ltkA))

, Out(pk(~ltkA))

] rule Reveal_ltk:

[!Ltk(A, ltkA)] – [Reveal(A)]-> [

Out(ltkA)]

// Initialize Role A

rule Init_A:

[Fr(~id)

, !Ltk(A, ltkA)

, !Pk(B, pkB)

]

–[Create(A, ~id), Role(’A’)]->

[St_A_1(A, ~id, ltkA, pkB, B)

]

// Initialize Role B

rule Init_B:

[Fr(~id)

, !Ltk(B, ltkB)

, !Pk(A, pkA)

]

–[Create(B, ~id), Role(’B’)]->

[St_B_1(B, ~id, ltkB, pkA, A)

]

// Role A sends first message

rule A_1_send:

[St_A_1(A, ~id, ltkA, pkB, B)

, Fr(~na)

]

–[

Send(A, aenc{A, ~na}pkB)

, Secret(~na), Honest(A), Honest(B), Role(’A’)

]->

[St_A_2(A, ~id, ltkA, pkB, B, ~na)

, Out(aenc{A, ~na}pkB)]

continue ...

4.3. The Tamarin Prover 39

...continue

// Role B receives first message

rule B_1_receive:

[

St_B_1(B, ~id, ltkB, pkA, A)

, In(aenc{A, na}pkB)

]

–[Recv(B, aencA, napkB)

, Secret(na), Honest(B), Honest(A), Role(’B’)

]->

[St_B_2(B, ~id, ltkB, pkA, A, na)

]

lemma executable:

exists-trace

"Ex A B m #i #j. Send(A,m)@i & Recv(B,m) @j"

lemma secret_A:

"All n #i. Secret(n) @i & Role(’A’) @i ==>

(not (Ex #j. K(n)@j)) | (Ex X #j. Reveal(X)@j & Honest(X)

@i)"

lemma secret_B:

"All n #i. Secret(n) @i & Role(’B’) @i ==>

(not (Ex #j. K(n)@j)) | (Ex X #j. Reveal(X)@j & Honest(X)

@i)"

lemma secrecy_PFS_A:

exists-trace

"not All x #i.

Secret(x) @i & Role(’A’) @i ==>

not (Ex #j. K(x)@j)

| (Ex B #r. Reveal(B)@r & Honest(B) @i & r < i)"

end

mailto:@i
mailto:@j
mailto:@i
mailto:@i
mailto:@j
mailto:@j
mailto:@i
mailto:@i
mailto:@i
mailto:@j
mailto:@j
mailto:@i
mailto:@i
mailto:@i
mailto:@j
mailto:@r
mailto:@i

40 Chapter 4. Tamarin Prover for Security Protocols Modeling

4.3.6 Authentication Properties

In this section, we will define a hierarchy of increasingly stronger authentication

properties. which means, the non-injective agreement implies both weak agreement

and aliveness. In general, two types of claim events are used to analyze most authen-

tication properties as follows: The protocol ends with the producing the Commit ac-

tion fact by the role A, "Commit (a, b, <’A’, ’B’,t>)". The other role; B in

his turn produce the corresponding action fact "Running(b, a, < ’A’, ’B’,

t>)". A and B are roles for the agent names a and b respectively, with known term

t. The relationship between these two facts will need different requirements that

imposed between each of the following properties, except aliveness [29].

4.3.6.1 Aliveness

The aliveness of an agent b is guaranteed by the protocol; to an agent a in role A, if

the agent a completes a run of the protocol, apparently with b in role B, then b has

previously been running the protocol, as shown in the lemma.

lemma aliveness:

"All a b t #i.

Commit(a,b,t) @i

==> (Ex id #j. Create(b,id) @ j)

| (Ex C #r. Reveal(C) @ r & Honest(C) @ i)"

4.3.6.2 Weak agreement

The weak agreement of an agent b is guaranteed by the protocol with an agent a if,

whenever the agent a completes a run of the protocol, apparently with b in role B,

then b has previously been running the protocol, apparently, with a, as shown in the

lemma.

lemma weak_agreement:

"All a b t1 #i.

Commit(a,b,t1) @i

==> (Ex t2 #j. Running(b,a,t2) @j)

| (Ex C #r. Reveal(C) @ r & Honest(C) @ i)"

4.3.6.3 Non-injective agreement

The non-injective agreement of an agent b in role B on a message t is guaranteed by

the protocol with an agent a if, whenever the agent a completes a run of the protocol,

apparently with b in role B, then b has previously been running the protocol, appar-

ently with a, and b was acting in role B in his run, and the two principals agreed on

the message t, as shown in the lemma.

mailto:@i
mailto:@i
mailto:@j

4.3. The Tamarin Prover 41

lemma noninjective_agreement:

"All a b t #i.

Commit(a,b,t) @i

==> (Ex #j. Running(b,a,t) @j)

| (Ex C #r. Reveal(C) @ r & Honest(C) @ i)"

4.3.6.4 Injective agreement

The injective agreement of an agent b in role B on a message t is guaranteed by the

protocol with an agent a if, whenever the agent a completes a run of the protocol,

apparently with b in role B, then b has previously been running the protocol, appar-

ently with a, and b was acting in role B in his run, and the two principals agreed on

the message t. Moreover, each run of agent a in role A corresponds to a unique run

of agent b, for example, each agent Commit corresponds to a unique Running by the

partner agent.

Keeping in mind that preventing replay attacks achieved using injective agree-

ment. So, we need to involve a fresh value in each run via term t that must keep the

freshness of such value [62].

lemma injectiveagreement:

"All A B t #i.

Commit(A,B,t) @i

==> (Ex #j. Running(B,A,t) @j

& j < i

& not (Ex A2 B2 #i2. Commit(A2,B2,t) @i2

& not (#i2 = #i)))

| (Ex C #r. Reveal(C) @r & Honest(C) @i)".

mailto:@i
mailto:@j
mailto:@i
mailto:@j
mailto:@i2
mailto:@r
mailto:@i

42

Chapter 5

Modeling and Analyzing of TLS

1.3 Handshake Modes

In this section, we will briefly show the model for the three basic key exchange modes

that are supported in TLS 1.3 by showing the models we depends on in [29] then showing

our updates on that model:

• (EC)DHE (Diffie-Hellman over either finite fields or elliptic curves)

• PSK only

• PSK with (EC)DHE

The FIGURE 5.1 show the full TLS1.3 handshake protocol.

FIGURE 5.1: TLS1.3 Full handshake protocol [65]

The ClientHello message contains a random nonce, it also offers the protocol ver- sion,

and a list of symmetric hash pairs; key shares that provided by (EC)DHE or pre-shred

key that provided by PSK or a combination of both PSK with (EC)DHE,

Chapter 5. Modeling and Analyzing of TLS 1.3 Handshake Modes 43

ClientHello also includes some other extensions and fields for middlebox compati-

bility.

The ServerHello message determines the negotiated cryptographic parameters,

and the shared keys with the client, which is a key share extension in Diffie-Hellman

(EC)DHE) or pre-shared key extension in a PSK or using both together (EC)DHE

and PSK. This thesis will relay on the above handshake basics to start our modeling

process in the following sections [66]

5.0.1 DHE Mode Modeling and Analysis

Foremost, we use a pure DHE handshake when no pre-shared key available be-

tween the communicating parties. Moreover, DHE establishes a resumption secret

to be used by subsequent handshakes to derive a pre-shared key. The server-side

authentication is required in this mode.

DHE authenticate peers using the public key cryptography alongside with cer-

tificates. However, the certificate side of the client is optional and needs the certifi-

cate request from the server.

It is good to mention that, we can derive around four more modes for the DHE

itself according to HelloRetry request and the Certificate request (i.e. DHE with

client/server authentication or without client/server authentication).

5.0.1.1 DHE Mode Modeling

We introduce a general modeling of the main roles (client and server) during the

handshake process in order to exchange messages between the send rule and its

corresponding receive rule.

The initialization for both roles; client and server is the state fact that we have to

begin with, to show participating the agent in the protocol. The modeling of client

and server initialization using Tamarin tool as shown below:

Server Initialization:

rule server_Initialize:

[!Ltk(S, ltkS)]

-[Create(S)]->

[St_Dh_S_1(S, ltkS)].

Client Initialization:

rule Client_Initialize:

[!Ltk(C, ltkC)]

-[Create(C)]->

[St_Dh_C_1(C, ltkC)]

44 Chapter 5. Modeling and Analyzing of TLS 1.3 Handshake Modes

5.0.1.2 Key Exchange

This phase will include the main messages of key exchange protocol, ClientHello,

ServerHello, and HelloRetryRequest. These messages includes a fresh nonce, the

Diffie-Hellman key share part. ClientHello: The model of sending clientHello rule:

rule dh_client_send_ch:

let

Msg = < ~NC, ’dhe’, ’g’^~ec >

in

[St_Dh_C_1(C, ltkC), Fr(~Nc), Fr(~ec)]

-[InEq(C, $S)]->

[St_Dh_C_2(C, $S, ltkC, ~ec, CH(Msg)), Out(Msg)]

When the server receives the ClientHello, the modeling will be the same for the

server, but with the following server state fact: [St_Dh_S_2(S, $C, ltkS, Y,

CH(Msg))]. (Note, Y = ’g’^ec).

Hello Retry Request As mentioned before; that HelloRetryRequest is an option

that can be used in need. This increases the possibility of rules; to be two rules for

each role (client) that is applicable to the other role (server). The server role will only

model the server role; this could be applicable to the client role as well:

rule dh_server_send_hrr:

let

Msg = ’hrr’

in

[St_Dh_S_2(S, C, ltkS, Y, CH(m))]

->

[St_Dh_S_2a(S, C, ltkS, <CH(m), HRR(Msg)>), Out(Msg)]

The above rule shows that we have two different state fact, one of them is ap-

plicable for the server that has ClientHello in the transcript. This means, only

one HelloRetryRequest is allowed. The state fact [St_Dh_S_2a(S, C, ltkS,

TSH) show that receiving the second ClientHello event; produces the state fact

[St_Dh_S_2a(S, C, ltkS, Y, TSH), where TSH = <CH(m1), HRR(m2),

CH(m3)>, TSH is included in generating every key, it represents the handshake pro-

cess till the ServerHello, CH represents ClientHello, HRR represents

HelloRetryRequest, m1, m2, m3 are messages.

ServerHello: The model of sending the ServerHello rule to the client:

rule dh_server_send_sh:

let

Msg = < ~Ns, ’dhe’, ’g’^~es > MS = Y^~es

in

[St_Dh_S_2(S, C, ltkS, Y, TSH), Fr(~Ns), Fr(~es)]

->

[St_Dh_S_3(S, C, ltkS, MS, <TSH, SH(Msg)>), Out(Msg)]

Chapter 5. Modeling and Analyzing of TLS 1.3 Handshake Modes 45

The (TSH) in the state fact (St_Dh_S_2) might contain one ClientHello mes-

sage, or it might contain three messages in case the server sends the HelloRetryRe-

quest message. In this case; the state fact (St_Dh_S_3) includes MS term, which

represented by the Diffie-Hellman key, all keys are derived from MS, since no pre-

shared keys are used in this mode to finally sending or receiving the ServerHello

rule.

5.0.1.3 Server Parameters

To determine the reset of the handshake process after ServerHello; we need mes-

sages that contains information from the server, which are EncryptedExtentions and

CertificateRequest that are encrypted using encryption key enckey.

Encrypted Extensions. The EncryptedExtensions (EE) message is the first mes-

sage that encrypted using enckey. So, it MUST be sent directly after the ServerHello

message.

The EE could include extensions that are not associated with individual certifi-

cates even if they are protected. Therefore, the client MUST abort the handshake

with an alert, after looking for any forbidden extensions in (RFC8446).

Certificate Request requires the client to authenticate its identity if the server

already requested it. So, we need to consider both, existence and absence of the op-

tional CertificateRequest in our modeling, as shown:

rule dh_client_receive_cr:

let

encKey = HKDF(« MS, ’enc’>, h(TSH) >) Msg = ’cr’

in

[St_Dh_C_4(C, S, ltkC, MS, TSH, TST), In(sencMsgencKey)]

->

[St_Dh_C_5(C, S, ltkC, MS, TSH, <TST,CR(Msg)>, ’cauth’)]

rule dh_server_skip_cr:

[St_Dh_S_4(S, C, ltkS, MS, TSH, TST)]

->

[St_Dh_S_5(S, C, ltkS, MS, TSH, TST, ’no_cauth’)]

Where MS is the source of key derivation, besides the handshake hash stages, TST

includes all subsequent messages that derives the traffic key trKey. According to

the applied rule; the resulting state fact either is tagged with the term ’cauth’ or

’no_cauth’ to determines whether the server authenticate itself at first; in order to

decide whether to send an authentication message to the client or not while model-

ing.

Authentication Messages. As we have two roles; client and server, thus we also

need to have two messages blocks, server/client blocks. In case of using the Diffie-

Hellman, the server will always need to send the full authentication block whereas

no pre-shared key is ready yet to alternatively authenticate the server.

46 Chapter 5. Modeling and Analyzing of TLS 1.3 Handshake Modes

Server Authentication Block. The rule for receiving the certificate of the server

for the client rule is represented as follows, taking into account the adopted assump-

tion in this model is a perfect public key infrastructure, which means; the certificates

are represented as pairs of (name and public key).

rule dh_client_receive_cts:

let

encKey = HKDF(« MS, ’enc’>, h(TSH) >), Msg = < S, pkltkS >

in

[St_Dh_C_5(C, S, ltkC, MS, TSH, TST, cr),

In(sencMsgencKey), !Pk(S, pkltkS)]

->

[St_Dh_C_6(C, S, ltkC, pkltkS, MS, TSH, <TST,CTS(Msg)>, cr)]

This rule contains the public key infrastructure, which modeled by the fact !Pk(S,

pkltkS). In this case; the server sends CertificateVerify after sending it’s certificate,

as shown:

rule dh_server_send_cvs:

let

encKey = HKDF(« MS, ’enc’>, h(TSH) >)

Msg = sign(h(<TSH,TST>), ltkS)

in

[St_Dh_S_6(S, C, ltkS, MS, TSH, TST, cr)]

->

[St_Dh_S_7(S, C, MS, TSH,<TST, CVS(Msg)>, cr),

Out(sencMsgencKey)]

Finally, the Server Finished message, which is the last message of the Server authen-

tication block is modeled almost the same. The message Msg = HMAC(h(<TSH,

TST>), mackey) has been encrypted by the server and sent out. The hash in

this message "Msg = HMAC(h(<TSH, TST>), mackey)" is differ from the hash

of the Server Certificate "Msg = sign(h(<TSH,TST>),ltkS)". Moreover, the

TST term contains the whole signature. The state fact that represent the agent will

be St_Dh_S_8(S, C, MS, TSH, TST, cr) and St_Dh_C_8(C, S, ltkC,

MS, TSH, TST, cr). In this case the trKey becomes known, which means that

the TST term is complete. Also, the TSR term that used to compute the resumption

secrete will be constituted by the remaining messages.

Client Authentication Block. The client Certificate and client

CertificateVerify messages will be skipped if the client didn’t receive the

CertificateRequest. The rules for both roles are applied with no client authen-

tication (no_cauth) term.

rule dh_client_skip_cauth:

[St_Dh_C_8(C, S, ltkC, MS, TSH, TST, ’no_cauth’)]

->

[St_Dh_C_10(C, S, MS, TSH, TST, ’no_cauth’)]

Chapter 5. Modeling and Analyzing of TLS 1.3 Handshake Modes 47

In the case of sending the CertificateRequest, then we apply both rules

dh_client_send_ctc and dh_server_receive_ctc using the client authen-

tication term, as shown below.

rule dh_client_send_ctc:

let encKey = HKDF(« MS, ’enc’>, h(TSH) >)

Msg = < C, pk(ltkC) > in

[St_Dh_C_8(C, S, ltkC, MS, TSH, TST, ’cauth’)]

->

[St_Dh_C_9(C,S,ltkC,MS,TSH,TST,CTC(Msg)),

Out(sencMsgencKey)]

rule dh_server_receive_ctc:

let encKey = HKDF(« MS, ’enc’>, h(TSH) >)

Msg = < C, pkltkC > in

[St_Dh_S_8(S, C, MS, TSH, TST, ’cauth’),

In(sencMsgencKey), !Pk(C, pkltkC)]

->

[St_Dh_S_9(S, C, pkltkC, MS, TSH, TST, CTC(Msg))]

Finally, the client Finished message received by the server are modeled as shown

below.

rule dh_server_receive_fic:

let

macKey = HKDF(« MS, ’mac’>, h(TSH) >)

encKey = HKDF(« MS, ’enc’>, h(TSH) >)

Msg = HMAC(h(«TSH,TST>,TSR>), macKey)

trKey = HKDF(« MS, ’tr’>, h(<TSH,TST>) >)

in

[St_Dh_S_10(S, C, MS, TSH, TST, TSR),

In(sencMsgencKey)]

-[Dh_Server_Ts(TSH, <TSR,FIC(Msg)>),

Dh_Server_Claim_Secret(S, ’encKey’, encKey),

Dh_Server_Claim_Secret(S, ’macKey’, macKey),

Dh_Server_Claim_Secret(S, ’trKey’, trKey),

Commit(S,C, <’S’,’C’,’DH’,

< macKey, encKey, trKey > >),

Honest(S),

Honest(C)

]->

[St_Dh_S_11(S, C, MS, TSH, TST, <TSR,FIC(Msg)>)]

New Session Ticket. The last message sent during the post handshake phase is

the NewSessionTicket (NST) with the value (lable), which can be used as psk_id in

the future handshake. This is called handshake resumption and can be used in the

future to have the ability of sending data in the first flight of the protocol. In this

part, we need to have an outlook about the security properties of resSec. This post

handshake message is crucial for the agreement properties satisfied by resSec. This

48 Chapter 5. Modeling and Analyzing of TLS 1.3 Handshake Modes

post handshake message is encrypted using the key trKey. The rule of sending the

NewSesstionTicket message, as shown below.

rule dh_server_send_nst:

let

trKey = HKDF(« MS, ’tr’>, h(<TSH,TST>) >)

resSec = HKDF(« MS, ’res’>, h(«TSH,TST>,TSR>) >)

Msg = label

in

[St_Dh_S_11(S,C,MS,TSH,TST,TSR), Fr(label)]

-[Dh_Server_Ts(TSH, TSR),

Dh_Server_Claim_Secret(S, ’resSec’, resSec),

Running(S,C,<’C’,’S’,’DH’, resSec >),

Commit(S,C, <’S’,’C’,’DH’, resSec >),

Honest(S), Honest(C)

]->

[Out(sencMsgtrKey)]

Executions and Lemmas. We need to verify our models if it behaves as expected.

To this end; the executable lemmas are the best techniques to do this task, which is

checking our security properties model behaviour since executable lemmas are re-

sponsible for proving or disproving these security properties. We have four sub

modes of handshake protocols (Hello Retry Request , No Hello Retry Request ,

Client Authentication and No Client Authentication), each sub mode needs a lemma,

so we need to specify four different lemmas to describe if the property hold (exist

trace), these lemmas are defined by a model that contains a full handshake consider-

ing the disability of compromising any agent by the adversary. Two of these lemmas

are shown below, the first one for a handshake with client side authentication with

no HelloRetryRequest (HRR) message. The other lemma is without client authen-

tication, but with HRR:

lemma 1:

lemma dh_nhrr_cauth_executable:

exists-trace

" Ex TSH m1 m2 TSR #i. Dh_Server_Ts(TSH, TSR)@i &

TSH = <CH(m1),SH(m2)> &

not (Ex tail. TSR = <’no_cauth’, tail >) &

not (Ex C #j. Rev(C)@j) "

lemma 2:

lemma dh_hrr_ncauth_executable:

exists-trace

" Ex TSH TSR tail #i. Dh_Server_Ts(TSH, TSR) @i &

not (Ex m1 m2. TSH = <CH(m1),SH(m2)>) &

TSR = <’no_cauth’, tail > &

not (Ex C #j. Rev(C)@j) "

Dh_Server_Ts(TSH, TSR)

mailto:@i
mailto:@j
mailto:@i
mailto:@j

Chapter 5. Modeling and Analyzing of TLS 1.3 Handshake Modes 49

These action facts have been used to restrict traces to a specific mode/sub-mode.

If the term TSH = <CH(m1),SH(m2)>) does not contain HRR, then the hand-

shake do not involve HRR message. If the tag ’no cauth’ is not included with the

TSH term, then no client side authentication is required in the handshake. The au-

tomatic verification shows the success of lemmas, and if the security property has

accomplished.

5.0.1.4 Diffie-Hellman Mode Analysis

The following analysis has been verified, tested and updated for the following orig-

inal analysis, which aims to verify the satisfaction of the property for different ways

of executing the handshake (with HRR, no cauth ...etc.). Secrecy and authentication

are the security properties that we are interested in. Each sub-mode need to be tested

for the satisfaction of each property. For efficiency, and according to specifications

of the properties in Lowe’s hierarchy of authentication specifications [67], proving

the "lemmas" for the whole model means that we can conclude that every "mode"

satisfies it. But, if we can’t prove the lemma for the whole, then we need to be

more specific in defining lemmas, for instance, defining lemmas for the handshake

with/without client-side authentication.

The security properties have the form of implication, so the original researcher

have added the restrictions to the premise to be able to constrain the lemma to a

specific sub-mode. To do so, they have added the constraint Dh_Role_Ts(TSH,

TSR)@i to the premise. Where, i is a temporal variables. The set of traces will

be partitioned into two sub modes; with client side authentication and without

client side authentication. The last partition that concerning the HRR will not be

included here, since it doesn’t affect the validity of the analysis in this stage. More-

over, the precision, in this case, is decreased especially with the existence of an

attack, e.g., the attack would be applied to the handshake with HRR during the

mode without client side authentication. For this reason, they consider the addi-

tional partition induced by the optional HRR, especially, when the attack exploits

the structure of this exceptional flow. They have used the restrictions to define

sub mode specific lemmas and adding the following restrictions, if they constrain

the lemma to consider only the handshakes with client side authentication: not(Ex

tail. TSR = <’no_cauth’, tail>) as a conjunction to its premise. In con-

trast, the handshakes without the client side authentication will include the restric-

tion TSR=<’no_cauth’, tail> as a conjunction to its premise, binding the tail

variable to the all messages. To prove the PFS for a server running Diffie-Hellman

mode with client side authentication, the used lemma would be specified as shown.

mailto:@i

50 Chapter 5. Modeling and Analyzing of TLS 1.3 Handshake Modes

lemma dh_cauth_server_pfs: "All S tag

x TSH TSR #i.(

Dh_Server_Claim_Secret(S, tag, x)@i &

Dh_Server_Ts(TSH, TSR)@i &

not (Ex tail. TSR = <’no_cauth’, tail >))

==> (not (Ex #j. K(x)@j)|

(Ex A #j. Rev(A)@j & j<i & Honest(A)@i))"

Secrecy. the form of all secrecy claims in this mode will be Dh_Role_Claim_

Secret(agent, termtag, term), where termtag either is encryption key

’encKey’, message authentication key ’macKey’, traffic key ’trKey’,

or resumption secret ’resSec’.

Server role, the rule dh_server_receive_fic includes three of secrecy claims

for encKey, macKey, and trKey. The forth secrecy claim for resSec. is added to the rule

dh_server_send_nst specifically after the NST message.

Then, we made sure to specify and verify the following lemmas:

dh_server_secrecy, the overall secrecy does not hold, the (×) sign shows an

attack.

dh_ncauth_server_secrecy, the secrecy of the anonymous mode also does

not hold, the (×) sign shows an attack too.

dh_cauth_server_pfs, the PFS of the authenticated mode have been proven,

the () sign shows that the secrecy property has proven to be secure, detailed fol-

lows:

The first two properties does not hold since the attacker runs the protocol as an

anonymous client to learn the keys. The third property was proven to hold. We

conclude both, secrecy and PFS are satisfied using the authentication mode, while

the server fails in anonymous handshake mode no client authentication (ncauth).

As a result, the handshake with the client side authentication satisfies secrecy

and PFS, regardless sending the HRR message or not. However, the handshake

without using the client side authentication reveals attacks that violate secrecy and

does not satisfy it. Taking into consideration that the secrecy could still satisfy for a

specific sub mode using the handshake without client authentication when sending

the HRR, but this isn’t a general situation, so, we do not rely on whether sending

HRR or not in any future investigations.

Client. The lemma dh_client_pfs has been satisfied and correctly proven

by Tamarin prover, which means that client side secrecy is done. As a result, every

single sub mode satisfies the secrecy and PFS for this handshake mode.

Agreement. To claim facts in this mode we need to follow a specific structure in

Tamarin, which shown below:

Commit(a, b, < ’C’,’S’,’DH’, t>)

Running(a, b, < ’S’,’C’,’DH’, t>)

mailto:@i
mailto:@i
mailto:@j
mailto:@j
mailto:@i

Chapter 5. Modeling and Analyzing of TLS 1.3 Handshake Modes 51

The commit claim and the running claim are made by an agent a running as a client,

presumably with agent b running as a server.

Server The defined lemmas for this part is shown in the Table 5.1:

TABLE 5.1: Server agreement

Lemma (security property) Verified (Satisfied)

dh_server_aliveness ×

dh_ncauth_server_aliveness ×

dh_cauth_server_injectiveagreement 

As shown in the Table 5.1, the first two properties do not hold the security spec-

ification, which implies an attack; as proven by Tamarin tool. However, if we used

the client side authentication, then the injective agreement between the server and

the client will be satisfied with every key.

Firstly, for the Client we need to specify dh_client_injectiveagreement,

in order to analyse the agreement guarantees of the client, with a positive assump-

tion, that it would hold. However, after applying the lemma using Tamarin tool, the

attack of disagreement on the client name appears between the client and the server.

The cause of this returns to the fact that, for security reasons, the client never sends

his name.

The proposed solution by the researcher [29] was to achieve the injective agree-

ment by using a ClientHello as a holder to include the agent name of the client,

which could be included in the handshake hash. But, this solution needs to change

the structure of TLS 1.3 protocol. The problem could be solved if the agent name

replaced by an IP address and to be included in the hash function.

The client agreement properties make no much sense in the context of anonymous

clients. To show this, we specify client weak agreement (lemma dh), which resulted

in disagreement as in dh_client_injectiveagreement. So, the definition of

properties of anonymous agreement expressed as follows:

lemma dh_client_anonymous_weakagreement:

"All a b m #i.

Commit(a,b,<’C’,’S’,’DH’, m >)@i

==> (Ex c ts #j.

Running(b,c,ts)@j)

|(Ex X #r. Rev(X)@r & Honest(X)@i)"

Note how dh_client_anonymous_weakagreement degenerates to

dh_client_aliveness by relaxations on the properties.

lemma dh_client_anonymous_injectiveagreement:

"All a b t #i.(

Commit(a,b,<’C’,’S’,’DH’, t>)@i &

==> (Ex c #j.

continue ...

mailto:@i
mailto:@j
mailto:@r
mailto:@i
mailto:@i

52 Chapter 5. Modeling and Analyzing of TLS 1.3 Handshake Modes

...continue

Running(b,c,<’C’,’S’,’DH’, t>)@j &

j < i &

not (Ex a2 b2 mode #i2.

Commit(a2,b2,<’C’,’S’, mode, t>)@i2 &

not (#i2 = #i)))

|(Ex X #r. Rev(X)@r & Honest(X)@i)"

The main difference between these two lemmas corresponds to non-anonymous

lemma is that they do not require the agent b to have been running apparently with

an agent a. Which means, it’s OK if agent b does not know the agent name of a. Con-

sidering these properties, the verification of satisfaction of these lemmas are show in

Table 5.2.

TABLE 5.2: Week agreement vs. injective agreement

Lemma (security property) Verified (Satisfied)

dh_client_anonymous_weakagreement 

 dh_client_anonymous_injectiveagreement 

 dh_cauth_client_injectiveagreement 

The Table 5.2 shows the prove of the first two lemmas, which guarantee the

anonymous client that the server injectively agrees on the values of encKey, macKey,

trKey, and resSec with somebody. The client may be seen as idetified by that specific

handshake run, as it’s known that we derived the secret values from the secret of

Diffie-Hellman and both nonces. The dh_cauth_client_injectiveagreement

is proven to be violated if the commit claim (Commit(C,S,<’C’,’S’,’DH’, <

macKey, encKey, trKey > >)) is made in the rule that models the send-

ing of Client Finished. In this stage, the client isn’t sure if the server has received

it’s certificate and it’s identification. We satisfy the clients claim after receiving an

encrypted message with trKey from the server, which is derived partially from the

client certificate. Therefore, in the analysis, the rule dh_client_receive_nst de-

fined to include the mentioned claim. With this, dh_cauth_client_

injectiveagreement is proven correctly.

5.0.1.5 DHE Mode Results

The summary of the verified Diffie-Hellman results that shown in Table 5.3. Both

columns; dh_ncauth and dh_cauth represents no client side authentication and

client side authentication respectively. Each column represents security property

from the point of view of a specific role.

mailto:@j
mailto:@i2
mailto:@r
mailto:@i

Chapter 5. Modeling and Analyzing of TLS 1.3 Handshake Modes 53

TABLE 5.3: Diffie-Hellman Model Results

Security property from role point

of view

dh_ncauth

dh_cauth

Secrecy for Server

PFS for Server
×

×




Secrecy for Client

PFS for Client








Aliveness for Server

Weak Agreement for Server

Non-injective Agreement for Server

Injective Agreement for Server

×

×

×

×









Aliveness for Client

Weak Agreement for Client

Non-injective Agreement for Client

Injective Agreement for Client



×

×

×









Anonymous Weak Agreement for Client

Anonymous Non-injective Agreement

for Client

Anonymous Injective Agreement

for Client

 

 



 

 

 

5.0.2 Pre-shared keys (PSK) Modes Modeling and Analysis

The FIGURE 5.2 show the TLS1.3 PSK handshake protocol.

FIGURE 5.2: TLS1.3 PSK handshake protocol [65]

This section includes summary and results of the PSK mode handshakes analysis.

The two modes only differ in the key exchange phase. Thus, we will model them

with just one mode. Instead of using the pure Diffie-Hellman mode in analyzing the

handshakes, we will be modeling the PSKs as fresh nonces that are secret and injec-

tively agreed on. Keeping in mind that the PSK is a result of a previous handshake.

54 Chapter 5. Modeling and Analyzing of TLS 1.3 Handshake Modes

As it is stated in the TLS protocol RFC8446 that no need for the server to au-

thenticate itself in the PSK modes since it is already authenticated by the PSK. While

it’s a must in the Diffie-Hellman mode. The assumption here is the possibility for

the client to authenticate itself in the PSK modes. As we don’t use Diffie-Hellman

mode in this analysis, in this case, the PSK seems to be generated out of the band.

Considering all of the above, it’s logical to assume that these PSKs authenticate both

parties. The delayed client authentication in PSK modes are included in this model.

We aim here to include this feature in the final model, but while the dependency

graphs are not readable, i.e., has a huge size, which prevents us from conducting

the sanity checks on that model. So, we need to create smaller models to check the

availability of this feature. This allows us to verify that the corresponding rules are

defined appropriately, then apply the same technique for the final model.

5.0.2.1 Pre-shared key Modes Modeling

In this section, we describe the model in an abstract level. In addition, we prefer not

to present the whole rules for every message rather describe them on a high level.

This is because of the messages in the previous handshake (Diffie-Hellman) is almost

the same and no new messages will be added to PSK handshake. Finally, we express

the modeling process of PSK modes in Tamarin tool.

Key Infrastructure

Although the client side authentication is supported in the PSK modes, the sym-

metric pre-shared keys are the main source of authenticity. The persistent fact (!) is

used to represented PSK, !Psk(S,C,~psk_id, ~psk), the main idea behind this

fact is to ensure the freshness and uniqueness of PSK and psk_id terms, in order to

prevent the adversary of revealing the PSK directly without the need for producing

the reveal action fact.

rule register_psk:

[Fr(~psk), Fr(~psk_id)]

->

[!Psk(S,C, ~psk_id, ~psk)]

reveal_psk:

[!Psk(S, C, psk_id, psk)]

-[Rev(S), Rev(C)]->

[Out(psk)]

Key Exchange

We define the first rules of the handshake protocol for ClientHello and ServerHello

for both pure PSK mode, and PSKDH mode. In this phase, each rule is defined sep-

arately for each mode. Moreover, the tags that indicate the mode are also included

Chapter 5. Modeling and Analyzing of TLS 1.3 Handshake Modes 55

in the exchanged messages. Also, nonces, psk_id term are used to identify the

corresponding PSK.

ClientHello = <~Nc, ’pskid’, psk_id >

ServerHello = < ~Ns, ’pskid’, psk_id >

The messages of the PSKDH mode additionally contains Diffie-Hellman half

keys:

ClientHello = < ~Nc, ’pskdhe’, psk_id, ’g’^~ec >

ServerHello = < ~Ns, ’pskdhe’, psk_id, ’g’^~es >

Each mode and each role have a rule to model the sending and receiving messages

in this phase. For example, the rule pskonly_client_send_ch and

pskdh_client_send_ch, these messages (the sending and receiving messages),

then collected in the TSH term after wrapping them with the corresponding func-

tion. Then, after the handshake phase, TSH is fully defined and the keys encKey

and macKey are available to the roles.

The sources of the derived keys differ according to the model of the handshake.

MS in the pure PSK mode is set to the value of PSK. While we derive MS in the PSK

mode that uses Diffie-Hellman key exchange from both input secrets.

The state facts of the form St_Psk_S_3(S, C, MS, TSH, mode) are pro-

duced by the rules modeling the ServerHello message. The term mode in the state

fact is used to indicate the mode of the handshake, either ’pskonly’ or ’pskdh’,

we use it later when defining lemmas. The rules modeling subsequent messages are

also defined for either mode; the mode term here kept abstract during the rewriting

of multisets.

Server Parameter

As in Diffie-Hellman mode, this phase contains only the messages Encrypted

Extensions and CertificateRequest. These messages sent by the server

and received by the client after they are encrypted with encKey. They also form

the first of the TST term message. Taking into account that the client authentication

is optional, we define the following rules, rule psk_server_skip_cr, and rule

psk_client_skip_cr to allow for traces where CertificateRequest is not being

sent. These rules also use the tags ’no_cauth’ and ’cauth’ to indicate the use

of the CertificateRequest or not. Both pairs can be applied to the same state facts,

which might only differ in the content of the tag, and the handshake transcript.

Authentication Phase and New Session Ticket (NST)

In this phase, the message Server Finished is sent by the server, which is defined as:

Msg = HMAC(h(<TSH,TST>), macKey)

The Finish message is the last one included in the term TST. The tag of the state facts

56 Chapter 5. Modeling and Analyzing of TLS 1.3 Handshake Modes

distinguishes between two applicable sets of rules. Which means, the applicable

rule depends on the tag, i.e., if the tag indicates client authentication, then the mod-

eled sending and receiving rules of Client Certificate and Client CertificateVerify

becomes applicable. Furthermore, psk_client_skip_cauth and

psk_server_skip_cauth are applied to the produced state facts. The skip rule

change the first values of the term TSR from CTC and CVS to add ’no_cauth’ as

the first value to TSR instead, which is the same as in the DH mode, because of ex-

pecting TSR to be part of the state facts by the rules psk_client_send_fic and

psk_server_receive_fic. We keep the client authentication tag in the state facts

for future use of submode selection in the definition of lemmas, even though it is not

used anymore after the split case on the state fact.

Executability

We define and use the fact Psk_Role_Mode(mode, tag) in order to check if the

model has the ability to execute valid protocol traces. The term mode represents ei-

ther ’PSKDH’ or ’PSKONLY’, while the term tag represents either ’cauth’ or

’no_cauth’. Then, each of the above terms needs to have a separate lemma to rep-

resent it, which means that we need to specify four executability lemmas. The hand-

shakes with client authentication in pure PSK mode satisfies the following lemma:

lemma pskonly_cauth_executable

exists-trace

"Ex #i.

Psk_Client_Mode(’PSKONLY’, ’cauth’)@i &

not (Ex C #j. Rev(C)@j)"

In the next section, we show how to use these action facts to reason about the

mode and how it is explained.

5.0.2.2 PSK Mode Analysis

In this section, we consider the secrecy properties, the agreement and the naming

of lemmas as they defined in the previous sections. As mentioned in executability

section above, we have four modes of execution. The action fact Psk_Role_Mode

(mode, tag) is for analyzing/deducing a specific mode. For the server role, we

use Psk_Server_Mode(mode, tag). These action facts are created whenever a

rule produces a claim for secrecy or agreement.

Secrecy

The action facts of the form Psk_Role_Claim_Secret(agent,term-tag,term)

are used to define the corresponding rules of the secrecy properties terms encKey,

mailto:@i
mailto:@j

Chapter 5. Modeling and Analyzing of TLS 1.3 Handshake Modes 57

macKey, trKey, and resSec. The term-tag describes the type of the term. The proper-

ties for the analysis of client and server secrecy are defined in Table 5.4. The client

authentication (cauth) is not considered in the defining lemmas.

TABLE 5.4: Secrecy

Lemma (security property) Verified (Satisfied)

psk_server_secrecy 
 pskonly_server_pfs ×

pskdh_server_pfs 
 psk_client_secrecy 
 pskonly_client_pfs ×

pskdh_client_pfs 

We have verified the secrecy results for both client and server using Tamarin tool.

To illustrate the mode selection, we define the following lemma:

lemma pskonly_client_pfs: " All S tag

x cr #i.(Psk_Client_Claim_Secret(S,

tag, x)@i & Psk_Client_Mode(’PSKONLY’,

cr)@i)

==> (not (Ex #j. K(x)@j)

|(Ex A #j. Rev(A)@j & j<i & Honest(A)@i)) "

As shown in the Table 5.4, Tamarin reveals an attack, which is No PFS achieved)

for both pskonly_server_pfs and pskonly_client_pfs. This refers to deriv-

ing the keys of the pure PSK mode from the shared value between two parties, and

no ephemeral secrets where used.

In this thesis, we propose the use of compound PSKs by updating Stettler [29] model,

specifically, the register_psk rule, and the reveal_psk, which shown later in

this thesis. The Tamarin result verifies the PFS for both parties as shown in Table 5.5,

which means that the result has been changed from (falsified-attack) to (verified-proof).

TABLE 5.5: Achieving PFS for both parties

Lemma (security property) Verified (Satisfied)

pskonly_server_pfs 
 pskonly_client_pfs 

Return back to the rest of results shown in the Table 5.4, we recognize that all

remaining four lemmas have successfully proved, which means that secrecy on the

keys is satisfied in every sub-mode. Additionally, the pskdh mode ensures PFS

for both roles. All proved properties assume that the value of PSK is secret and

injectively agreed on by both parties.

mailto:@i
mailto:@i
mailto:@j
mailto:@j
mailto:@i

58 Chapter 5. Modeling and Analyzing of TLS 1.3 Handshake Modes

Agreement

As we are interested in the agreement properties on the terms encKey, macKey, trKey,

and resSec. We verify this by adding the action facts to the corresponding rules, as

shown:

Commit(a,b,<’S’,’C’,’PSK’, t>)

Running(b,a,<’S’,’C’,’PSK’, t>)

We define the following lemmas to analyze the action facts rules:

TABLE 5.6: Injective Agreement

Lemma (security property) Verified (Satisfied)

psk_server_injectiveagreement 
 psk_client_injectiveagreement 

Tamarin has verified the strongest authentication property, which is the injective

agreement. If the PSK is secret and provides authentication then PSK modes satisfy

mutual injective agreement. Every agreement in this work have been verified and

satisfied by the PSK modes [29].

TABLE 5.7: PSK Model Results - Original Model

Security property from

role point of view
pskonly

original
pskonly

updates

pskdh

Secrecy for Server

PFS for Server


×









Secrecy for Client

PFS for Client


×









Aliveness for Server

Weak Agreement for Server

Non-injective Agreement for Server

Injective Agreement for Server

























Aliveness for Client

Weak Agreement for Client

Non-injective Agreement for Client

Injective Agreement for Client

























5.0.2.3 PSK Mode Results

In this analysis, we suppose that both parties are already authenticated by the PSK.

This leads us to temporarily ignore the delayed client side and to cover it back in

session resumption section. The column in Table 5.7 pskonly-original represents the

original PSK mode modeling by Stettler [29], while the pskonly-updates represent our

new modeling and updates made on original modeling. Lastly, the column pskdh

represents the combination of both modes (PSK and the ephemeral Diffie-Hellman

secret) in order to achieve PFS.

Chapter 5. Modeling and Analyzing of TLS 1.3 Handshake Modes 59

5.0.3 0-RTT Modeling and Analysis

This section introduces the 0-RTT, compare it with the QUIC [68]; Google protocol.

Showing advantages and disadvantages of each. The way of implementing, model-

ing and analysis of 0-RTT and finally to show the anlysis results.

We need to use some cryptographic protocols for instance, Key exchange (KE)

protocols; to establish a secure key between two parties. QUIC, TLS, and SSH pro-

tocols are combined with KE protocols to establish such secure keys between two

parties in a network [15].

Although the performance has always been the main concern for cryptographic

protocols, the optimizations mainly focused on the cryptographic operations, which

controlled the overall cost of executions for a long period.

Not only the computation process becomes much faster nowadays; but also ad-

vancing and deployment of elliptic curve cryptography, which enforces the worker

in this field to extremely reduced the cost of cryptographic operations over time

because of the very fast progress in technology. As a result, the communication

complexity is the most important factor that controlling the overall efficiency of key

exchange protocols [14]. However, efficiency must be compatible with other factors

such as confidentiality and integrity of the transmitted data that are represented by

PFS and preventing replay attacks. To this end, Gunther et al. [15] have proposed

a solution that approved full forward secrecy for the transmitted payload messages

via constructing their own 0-RTT key exchange protocol to achieves PFS using punc-

turing method, which allows decrypting each ciphertext just once.

The main idea behind Gunther et al. [15] work, is to generate many keys using

only one master key (SK) via HIBE [28] and one-time signature [69]. FIGURE 5.3

summaries the whole process as follows:

• Step1: Generate secrete keys that decrypts one ciphertext each; via master key.

• Step2: Using HIBE and pseudo-random generator to generate step1 keys.

• Step3: Shows an example to use the sk(0101) to decrypt ciphertext(0101).

• step4: Determine the path from root to the intended key (leaf).

• step5: Define nodes’ siblings.

• Step6: Remove the secret key path, which makes it a one time use.

• Step7: Shows the number of growing secret keys, which equals two times of

security level that we want to achieve, for instance we need 256 keys to achieve

128 bit security as shown in the equation |sk\0101 ≈ 2 ∗ secpar.

• Step8: Shows the number of secrete keys for whole process; using puncturing

many times, which is unfortunately a very large size of keys (GBytes) needs to

be stored on the server.

60 Chapter 5. Modeling and Analyzing of TLS 1.3 Handshake Modes

FIGURE 5.3: Puncturing algorithm to prove PFS [15], [70].

Chapter 5. Modeling and Analyzing of TLS 1.3 Handshake Modes 61

5.0.3.1 0-RTT using Diffie–Hellman exchange

The FIGURE 5.4 show the TLS1.3 0-RTT handshake protocol.

Both QUIC and TLS 1.3 are using Diffie-Hellman key exchange protocol to derive

FIGURE 5.4: TLS1.3 0-RTT handshake protocol [65]

a 0-RTT key, which done in the first stage by sending the client key share to a pre-

visited server, then upgrade the key to a stronger one by combining the server key

share using Diffie-Hellman calculations to achieve forward-secret key. The whole

detailed process works as follows. The client already has the server configuration

including a semi-static Diffie-Hellman share gs from the previous connection; the

server keeps the exponent (s) for a short period of time (about 2-7 days) to keep it

fresh and to use it in the PSK process. The server configuration authentication in

QUIC is asymmetrically processed (offline) signed structure that announced by the

server, while TLS 1.3 is signed symmetrically (online) during a prior handshake. As

the process continue, the client sends an ephemeral Diffie-Hellman share gx, then

the exponential equation (gs)x = gxs is used to derive K1 for the 0-RTT key, this

allows the client to send encrypted data directly. The server uses the same process

to derive the same key using (gx)s ; this enables 0-RTT data decryption; the server

then strengthens the key by responding its own ephemeral key share gy . Finally, they

both agree on the same stronger, forward secrecy key K2 that is gxy , which remains

secure; no matter if the long-term secret has compromised for both parties or even

the server configuration key share gs [15].

62 Chapter 5. Modeling and Analyzing of TLS 1.3 Handshake Modes

5.0.3.2 0-RTT using Pre-shared key exchange

Pre-Shared keys are part of handshake mode in TLS 1.3, which can be established in

a previous connection and then can be used to establish a new connection (session

resumption). As well, the 0-RTT key K1 is derived from the previously established

secret key. This allows the client to send an immediate early data using K1, without

interacting the full handshake with the server. Then another key K2 is updated be-

tween parties from the PSK for the upcoming messages. To ensure forward secrecy

we combine the PSK with a Diffie-Hellman key share.

In this thesis, we are verifying and modeling 0-RTT in the pure PSK mode re-

garding of showing the secrecy and agreement on the keys used to protect the early

data [15].

5.0.3.3 0-RTT Model

We are modeling the set of rules that defining an alternative key exchange phase.

The early EncryptedExtensions and the end_of_early_data are not included here

since they are irrelevant to our properties and the latter needs synchronization.

The early keys defined as follows:

earlyEncKey = HKDF(<psk,’enc’>, h(CH(..)))

earlyMacKey = HKDF(<psk,’mac’>, h(CH(..)))

earlyTrKey = HKDF(<psk,’tr’>, h(CH(..)))

In order to send and receive ClientHello messages tagged with pre-shared key

identity and early data ’pskided’ we need to expand each role of the model with

rules that consume the state facts St_Psk_Role_1(..) and produce the state facts

St_Pskonly_Ed_Role_1(..). The definition of ClientHello as shown:

ClientHello = < ~Nc, ’pskided’, psk_id >

There exist other rules to model the Early Finished, taking the advantage of

using the same state facts as that used in the above ClientHello message. They

model the sending and receiving of Msg = HMAC(h(CH(..)), earlyMacKey)

encrypted using earlyEncKey. The rules modeling the Early Finished produces

the state facts St_Pskonly_Ed_Role_2(..). They are consumed by rules that

model the sending and receiving of the ServerHello. Lastly, modeling the reception

of the EncryptedExtensions rule. This allows the client to produce the claims

for the security properties. The client would have no agreement guarantees if these

claims made earlier, i.e., in the rules that receive ServerHello [29].

Chapter 5. Modeling and Analyzing of TLS 1.3 Handshake Modes 63

Analysis of 0-RTT

In general 0-RTT messages considered to be part of the PSK modes. However, the

previous modeler [29] have decided to took them apart to distinguish the secrecy

claims of the form Psk_Ed_Role_Claim_Secret(agent, term-tag, term),

from the claims made by roles running in the PSK modes. They have specified the

security properties as shown in Table 5.8:

TABLE 5.8: 0-RTT Analysis

Lemma (security property) Verified (Satisfied)

psked_client_pfs ×

psked_client_secrecy 

 psked_server_pfs ×

psked_server_secrecy 

 psked_client_injectiveagreement 

psked_server_injectiveagreement ×

psked_server_non_injectiveagreement 

Tamarin reveals an attack on both PFS lemmas, in addition to replay attack on the

injective agreement between parties. This refers to the derivation of early keys

from the static preshared key. If the client is unable to receive messages from the

server. This indicates that the server has no freshness guarantee about this data.

However, the client has freshness guarantees from the ClientHello’s nonce. This

is why the psked_client_injectiveagreement is proved. The server does a

non-injective agreement with the client on the early keys, however, it has no replay

protection. This is proven by psked_server_non_injectiveagreement. The

early data is unknown to the adversary if both parties are honest, which satisfies

both secrecy lemmas [29]. The Table 5.8 depicts the security properties analysis for

0-RTT.

Applying our first approach to resolve the security properties for the above anal-

ysis of 0-RTT by combining more than pre-shared key together, which resulted in

converting the results of both, the client and the server PFS from an attack (falsified)

to secure transition (verified). FIGURE 5.5 shows the Tamarin code for original and

our proposed models, followed by the the Tamarin results for both, as shown in

FIGURE 5.6.

FIGURE 5.5: The original Tamarin code vs. Our Proposal

64 Chapter 5. Modeling and Analyzing of TLS 1.3 Handshake Modes

FIGURE 5.6: The original Tamarin Result vs. Our Proposal Result

In order to solve the replay attack problem, we propose that after the server

receiving the client’s key-shares, it sends its key-shares (a list of keys or a database

to be saved by the client) to the client in order to create a session key by combining

them (one-by-one) with its own key-share, this allows sending secured data on the

first flight. The PFS problem happens when the server key-share is not available for

the client at the first step of resumption secret.

This also (more than key-share) leads to prevent the replay attack. For exam-

ple, The server creates its own (Deffi-Hellma) key-share (x1 = ga1 , x2 = ga2 , x3 =

ga3 , x4 = ga4 , x5 = ga5) then sends them to the client. The client keeps these key-

shares, then start using them one after another. Whenever, the client wants to send

Chapter 5. Modeling and Analyzing of TLS 1.3 Handshake Modes 65

0-RTT data to the server, the client creates a session key using the server key-share

(y1 = gb1 , y2 = gb2 , y3 = gb3 , y4 = gb4 , y5 = gb5). In this case, both parties are ready

to agree on the session keys and to start using each session key once, then drop it.

Lastly, when arriving the last session key, the process is repeated to create a new set

of shared keys. This will solve the problem, but we need some re-architecture of the

TLS 1.3 protocol to be able to do the Diffie-Hellman on the first flight.

0-RTT Data Analysis Results

The analysis of 0-RTT data properties are shown in the table 5.9. The psked column

represents early data of the PSK modes.

TABLE 5.9: 0-RTT Data Analysis Results

Security property from role point of view psked

Secrecy for Server

PFS for Server


×

Secrecy for Client

PFS for Client


×

Aliveness for Client

Weak Agreement for Client

Non-injective Agreement for Client

Injective Agreement for Client









Aliveness for Server

Weak Agreement for Server

Non-injective Agreement for Server

Injective Agreement for Server







×

The FIGURE 5.7 shows the Tamarin prover screen shot for some of psked results.

FIGURE 5.7: The Tamarin psked screen shot

66 Chapter 5. Modeling and Analyzing of TLS 1.3 Handshake Modes

5.0.3.4 Replay Attack Problem

The attacker can replay messages between parties to make them derive the same

key twice or to contribute to the derived key by including nonces in the exchanged

messages between the client and the server. QUIC protocol strives to solve the prob-

lem by reserving a server to store all nonces in "strike register" a size restricted by

a server-specific prefix "orbit" including the current time in the nonces and refusing

any repeated nonce [15]. This approach has been succeeded to prevent replays on

key-derivation on the key exchange level by prohibiting the adversary of making

parties derive the same key twice. However, it fails to prevent replays on actual data

exchanged (logical replay attack), specifically, working with the clustered and dis-

tributed servers. As a result, the replay attack problem is independent of whether

the 0-RTT key exchange is based on Diffie-Hellman or pre-shared keys [71]. On the

other hand Gillmor et al. [72] have also tried to solve the replay attacks by show-

ing that an attacker can make the encrypted data that sent by the client alongside

with 0-RTT key-exchange messages to be delivered twice as shown in FIGURE 5.8.

Combining the overall channel protocol that works on delivering the data messages

reliably; with any 0-RTT anti-replay mechanism applied at the key exchange level

becomes worthless (invalid) and this is because of resending the rejected 0-RTT data

by the automatically derived key that aimed to guarantee delivery [15].

FIGURE 5.8: Replay attack by Daniel [72].

The attack work as follows:

• The attacker transports the client’s 0-RTT message and encrypted data to the

server but keeps the server ’s key exchange response away from the client.

Chapter 5. Modeling and Analyzing of TLS 1.3 Handshake Modes 67

• Forces the server to reboot in order to lose its state then, re-send the same

message to the server.

• After rebooting; the server declines the 0-RTT message of the key exchange to

keep secure; instead, the server sends its own key share, which then passed to

the client by the attacker.

• The client uses the server key share in deriving the final key then, encrypt the

data and re-send to the server using the derived key in order to guarantee

reliable delivery.

• The server will re-process the data for the second time, which represents a

replay of the contained application data and results in processing a web trans-

action twice.

The existence of distributed server clusters in real-world; makes it easier for the at-

tacker to forwards the 0-RTT messages to two servers and drops the response of

the first server, instead of rebooting the server and keeps the client waiting for a

response, as shown in FIGURE 5.8. This attack targets the settings with distributed

clusters, which directly affects the cryptographic design of the QUIC protocol. More-

over, achieving full replay attack protection for envisioned 0-RTT seems to be im-

possible. As mentioned by Langley and Chang [73] that 0-RTT is "designed to die"

and the adapted version of TLS 1.3 handshake will replace the 0-RTT protocol. In

general, QUIC’s strategy [73] resist some of the replay attack kinds, while TLS 1.3

didn’t, rather it’s accepts replays as inevitable. which must be adapted in the future

versions of TLS 1.3.

68

Chapter 6

Conclusion

In this thesis, we have investigated, verified, modified and re-modeled some of TLS

1.3 security properties; focusing on handshake protocols based on previous models of TLS

security protocols using symbolic analysis tool, consideration the updated parts in latest

TLS drafts, for instance (draft-28) till releasing RFC8446 few months ago. The Dolev-Yao is

the attacker model; using the Tamarin prover tool. Firstly, we have upgraded and

combined more than pre-shared key, which resulted in prov- ing the PFS for the client

and the server using the mentioned symbolic tool. This drives us one step further our

targeted goal, which is reducing the latency overhead to send early payload data in the first

flight of resuming the handshake protocol us- ing the PSKs, maintaining critical security

guarantees, specifically perfect forward secrecy and preventing replay attacks. This result

shows the possibility of solving PFS less expensively than Gunther et al. [15] since we used

a simpler and effective way to delete the key rather than puncturing algorithm, where the

session key PSK used once then keeps updating different session keys throughout a single

session. We also believe that the second part of our proposed solution achieves replay

at- tack prevention in theory. Since, exchanging more than Diffie-Hellman key-share

between the parties and using them one at a time, then deleting the used key is a logical

solution. But, we need to verify the created model in the coming future, be- sides studying

the ability of re-structuring the Diffie-Hellman protocol needs more testing to make sure if

it considered a valid assumption. We also have verified that the client can be sure of

establishing a secure channel with the server under a per- fect public key infrastructure.

We have verified that the session resumption of PSK established in Diffie-Hellman satisfies

all security properties including PFS.

69

Bibliography

[1] C. Cremers, M. Horvat, S. Scott, and T. v. d. Merwe, “Automated analysis

and verification of tls 1.3: 0-rtt, resumption and delayed authentication”, in

2016 IEEE Symposium on Security and Privacy (SP), 2016, pp. 470–485. D O I: 10.

1109/SP.2016.35.

[2] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halder-

man, N. Heninger, D. Springall, E. Thomé, L. Valenta, et al., “Imperfect for-

ward secrecy: How diffie-hellman fails in practice”, in Proceedings of the 22nd

ACM SIGSAC Conference on Computer and Communications Security, ACM, 2015,

pp. 5–17.

[3] N. J. Al Fardan and K. G. Paterson, “Lucky thirteen: Breaking the tls and dtls

record protocols”, in Security and Privacy (SP), 2013 IEEE Symposium on, IEEE,

2013, pp. 526–540.

[4] N. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering, and J. C. Schuldt,

“On the security of rc4 in tls”, in Presented as part of the 22nd USENIX Security

Symposium (USENIX Security 13), 2013, pp. 305–320.

[5] N. J. AlFardan and K. G. Paterson, “Plaintext-recovery attacks against data-

gram tls”, in Network and Distributed System Security Symposium (NDSS 2012),

The Internet Society, 2012.

[6] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss,

A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue, “A messy state of the union:

Taming the composite state machines of tls”, in 2015 IEEE Symposium on Secu-

rity and Privacy, IEEE, 2015, pp. 535–552.

[7] K. Bhargavan, A. D. Lavaud, C. Fournet, A. Pironti, and P. Y. Strub, “Triple

handshakes and cookie cutters: Breaking and fixing authentication over tls”,

in 2014 IEEE Symposium on Security and Privacy, IEEE, 2014, pp. 98–113.

[8] K. Bhargavan, C. Fournet, R. Corin, and E. Ză linescu, “Verified cryptographic

implementations for tls”, ACM Transactions on Information and System Security

(TISSEC), vol. 15, no. 1, p. 3, 2012.

[9] G. V. Bard, “A challenging but feasible blockwise-adaptive chosen-plaintext

attack on ssl.”, in SECRYPT, 2006, pp. 99–109.

[10] D. Bleichenbacher, “Chosen ciphertext attacks against protocols based on the

rsa encryption standard pkcs# 1”, in Advances in Cryptology, —CRYPTO’98,

Springer, 1998, pp. 1–12.

https://doi.org/10.1109/SP.2016.35
https://doi.org/10.1109/SP.2016.35

70 BIBLIOGRAPHY

[11] B. Canvel, A. Hiltgen, S. Vaudenay, and M. Vuagnoux, “Password interception

in a ssl/tls channel”, in Annual International Cryptology Conference, Springer,

2003, pp. 583–599.

[12] J. Jonsson and B. S. Kaliski Jr, “On the security of rsa encryption in tls”, in

Annual International Cryptology Conference, Springer, 2002, pp. 127–142.

[13] V. Klima, O. Pokornỳ , and T. Rosa, “Attacking rsa-based sessions in ssl/tls”, in

International Workshop on Cryptographic Hardware and Embedded Systems, Springer,

2003, pp. 426–440.

[14] M. Fischlin and F. Günther, “Replay attacks on zero round-trip time: The case

of the tls 1.3 handshake candidates”, in Security and Privacy (EuroS&P), 2017

IEEE European Symposium on, IEEE, 2017, pp. 60–75.

[15] F. Günther, B. Hale, T. Jager, and S. Lauer, “0-rtt key exchange with full for-

ward secrecy”, in Annual International Conference on the Theory and Applications

of Cryptographic Techniques, Springer, 2017, pp. 519–548.

[16] J. C. Mitchell, M. Mitchell, and U. Stern, “Automated analysis of cryptographic

protocols using mur/spl phi”, in Security and Privacy, 1997. Proceedings., 1997

IEEE Symposium on, IEEE, 1997, pp. 141–151.

[17] L. C. Paulson, “The inductive approach to verifying cryptographic protocols”,

Journal of computer security, vol. 6, no. 1-2, pp. 85–128, 1998.

[18] P. F. Syverson and P. C. Van Oorschot, “On unifying some cryptographic pro-

tocol logics”, in Research in Security and Privacy, 1994. Proceedings., 1994 IEEE

Computer Society Symposium on, IEEE, 1994, pp. 14–28.

[19] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar, P. H.

Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani, et al., “The avispa tool

for the automated validation of internet security protocols and applications”,

in International Conference on Computer Aided Verification, Springer, 2005, pp. 281–

285.

[20] G. Lowe, “Breaking and fixing the needham-schroeder public-key protocol us-

ing fdr”, in International Workshop on Tools and Algorithms for the Construction

and Analysis of Systems, Springer, 1996, pp. 147–166.

[21] B. Blanchet et al., “An efficient cryptographic protocol verifier based on prolog

rules.”, in csfw, vol. 1, 2001, pp. 82–96.

[22] C. J. Cremers, “The scyther tool: Verification, falsification, and analysis of secu-

rity protocols”, in International Conference on Computer Aided Verification, Springer,

2008, pp. 414–418.

[23] S. Meier and B. Schmidt, The tamarin prover: Source code and case studies, Ac-

cessed: 2017-04-27. [Online]. Available: http://hackage.haskell.org/

package/tamarin-prover-0.8.2.0.

http://hackage.haskell.org/package/tamarin-prover-0.8.2.0
http://hackage.haskell.org/package/tamarin-prover-0.8.2.0

BIBLIOGRAPHY 71

[24] C. J. Cremers, P. Lafourcade, and P. Nadeau, “Comparing state spaces in auto-

matic security protocol analysis”, in Formal to Practical Security, Springer, 2009,

pp. 70–94.

[25] A. T. Luu, J. Sun, Y. Liu, J. S. Dong, X. Li, and T. T. Quan, “Seve: Automatic

tool for verification of security protocols”, Frontiers of Computer Science, vol. 6,

no. 1, pp. 57–75, 2012.

[26] S. Meier, “Advancing automated security protocol verification”, PhD thesis,

ETH Zürich, 2013.

[27] R. Sasse, J. Dreier, C. Cremers, and D. Basin, Security protocol analysis using the

tamarin prover-teaching material, 2017. [Online]. Available: https://github.

com/tamarin-prover/teaching/blob/master/Tamarin-Tutorial-

morning.pdf.

[28] S. Agrawal, D. Boneh, and X. Boyen, “Efficient lattice (h) ibe in the standard

model”, in Annual International Conference on the Theory and Applications of Cryp-

tographic Techniques, Springer, 2010, pp. 553–572.

[29] D. Basin, “Formally analyzing the tls 1.3 proposal”, [Online]. Available: https:

/ / www . ethz . ch / content / dam / ethz / special - interest / infk /

inst-infsec/information-security-group-dam/research/software/

TLS-1.3_thesis_vincent_stettler.pdf.

[30] I. Ristic, Bulletproof SSL and TLS: Understanding and Deploying SSL/TLS and PKI

to Secure Servers and Web Applications. Feisty Duck, 2013.

[31] H. Krawczyk and H. Wee, “The optls protocol and tls 1.3”, in Security and

Privacy (EuroS&P), 2016 IEEE European Symposium on, IEEE, 2016, pp. 81–96.

[32] W. M. Petullo, X. Zhang, J. A. Solworth, D. J. Bernstein, and T. Lange, “Min-

imalt: Minimal-latency networking through better security”, in Proceedings of

the 2013 ACM SIGSAC conference on Computer & communications security, ACM,

2013, pp. 425–438.

[33] J. P. a. Christof Paar, Understanding Cryptography: A Textbook for Students and

Practitioners, 1st ed. Springer-Verlag Berlin Heidelberg, 2010.

[34] W. Stallings, Network Security Essentials: Applications and Standards, 4/e. Pearson

Education India, 2000.

[35] A. Satapathy and J. L. L. M., “A comprehensive survey on ssl/ tls and their

vulnerabilities”, International Journal of Computer Applications, vol. 153, no. 5,

pp. 31–38, 2016, I S S N: 0975-8887. D O I: 10 . 5120 / ijca2016912063. [On-

line]. Available: http://www.ijcaonline.org/archives/volume153/

number5/26401-2016912063.

[36] W. Stallings, Cryptography and Network Security: Principles and Practice, Interna-

tional Edition: Principles and Practice. Pearson Higher Ed, 2014.

https://github.com/tamarin-prover/teaching/blob/master/Tamarin-Tutorial-morning.pdf
https://github.com/tamarin-prover/teaching/blob/master/Tamarin-Tutorial-morning.pdf
https://github.com/tamarin-prover/teaching/blob/master/Tamarin-Tutorial-morning.pdf
https://www.ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/information-security-group-dam/research/software/TLS-1.3_thesis_vincent_stettler.pdf
https://www.ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/information-security-group-dam/research/software/TLS-1.3_thesis_vincent_stettler.pdf
https://www.ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/information-security-group-dam/research/software/TLS-1.3_thesis_vincent_stettler.pdf
https://www.ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/information-security-group-dam/research/software/TLS-1.3_thesis_vincent_stettler.pdf
https://doi.org/10.5120/ijca2016912063
http://www.ijcaonline.org/archives/volume153/number5/26401-2016912063
http://www.ijcaonline.org/archives/volume153/number5/26401-2016912063

72 BIBLIOGRAPHY

[37] T. Dierks and E. Rescorla, The transport layer security (tls) protocol version 1.2,

2008. [Online]. Available: https://www.rfc-editor.org/rfc/rfc5246.

txt.

[38] R. Holz, Y. Sheffer, and P. Saint-Andre, “Recommendations for secure use of

transport layer security (tls) and datagram transport layer security (dtls)”,

2015.

[39] K. G. Paterson and T. van der Merwe, “Reactive and proactive standardisa-

tion of tls”, in International Conference on Research in Security Standardisation,

Springer, 2016, pp. 160–186.

[40] M. Marlinspike, “More tricks for defeating ssl in practice”, Black Hat USA,

2009.

[41] Y Sheffer, R Holz, and P Saint-Andre, “Summarizing known attacks on trans-

port layer security (tls) and datagram tls (dtls)”, Tech. Rep., 2015.

[42] T. Duong and J. Rizzo, “Here come the ninjas”, Unpublished manuscript, vol. 320,

2011.

[43] S. Vaudenay, “Security flaws induced by cbc padding—applications to ssl,

ipsec, wtls...”, in International Conference on the Theory and Applications of Cryp-

tographic Techniques, Springer, 2002, pp. 534–545.

[44] J. Salowey, A. Choudhury, and D. McGrew, “Aes-gcm cipher suites for tls”,

2008.

[45] P. Gutmann, “Encrypt-then-mac for transport layer security (tls) and datagram

transport layer security (dtls)”, 2014.

[46] B. Möller, T. Duong, and K. Kotowicz, “This poodle bites: Exploiting the ssl

3.0 fallback”, Security Advisory, 2014.

[47] S. Bruce, “Applied cryptography: Protocols, algorithms, and source code in c”,

John Wiley & Sons, Inc., New York, 1996.

[48] G. Paul and S. Maitra, “Permutation after rc4 key scheduling reveals the secret

key”, in International Workshop on Selected Areas in Cryptography, Springer, 2007,

pp. 360–377.

[49] I. Mantin and A. Shamir, “A practical attack on broadcast rc4”, in International

Workshop on Fast Software Encryption, Springer, 2001, pp. 152–164.

[50] S. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses in the key scheduling al-

gorithm of rc4”, in International Workshop on Selected Areas in Cryptography,

Springer, 2001, pp. 1–24.

[51] N. J. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering, and J. C. Schuldt,

“On the security of rc4 in tls.”, in Usenix security, Washington DC, USA, vol. 2013,

2013.

[52] T. Duong and J. Rizzo, “The crime attack”, in Presentation at ekoparty Security

Conference, 2012.

https://www.rfc-editor.org/rfc/rfc5246.txt
https://www.rfc-editor.org/rfc/rfc5246.txt

BIBLIOGRAPHY 73

[53] T. Be’ery and A. Shulman, “A perfect crime? only time will tell”, Black Hat

Europe, vol. 2013, 2013.

[54] A. Prado, N. Harris, and Y. Gluck, “Ssl, gone in 30 seconds”, Breach attack, 2013.

[55] D. Brumley and D. Boneh, “Remote timing attacks are practical”, Computer

Networks, vol. 48, no. 5, pp. 701 –716, 2005, Web Security, I S S N: 1389-1286. D O I:

https : / / doi . org / 10 . 1016 / j . comnet . 2005 . 01 . 010. [Online].

Available: http://www.sciencedirect.com/science/article/pii/

S1389128605000125.

[56] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov, “Using frankencerts

for automated adversarial testing of certificate validation in ssl/tls implemen-

tations”, in Security and Privacy (SP), 2014 IEEE Symposium on, IEEE, 2014,

pp. 114–129.

[57] S. Farrell and H. Tschofenig, “Pervasive monitoring is an attack”, 2014.

[58] N. Mavrogiannopoulos, F. Vercauteren, V. Velichkov, and B. Preneel, “A cross-

protocol attack on the tls protocol”, in Proceedings of the 2012 ACM conference

on Computer and communications security, ACM, 2012, pp. 62–72.

[59] D Gillmor, A Langley, N Modadugu, and B Moeller, “Negotiated finite field

diffie-hellman ephemeral parameters for tls”, Work in Progress, draft-ietf-tls-

negotiated-ff-dhe-10, 2015.

[60] S. Fluhrer and Y. Sheffer, “Additional diffie-hellman tests for the internet key

exchange protocol version 2 (ikev2)”, 2013.

[61] M. Ray, S. Dispensa, E. Rescorla, et al., “Transport layer security (tls) renegoti-

ation indication extension”, Transport, 2010.

[62] TheTamarinTeam, Tamarin prover manual., Accessed: 2018-06-19. [Online]. Avail-

able: https://tamarin-prover.github.io/manual/index.html.

[63] B. Schmidt, “Formal analysis of key exchange protocols and physical proto-

cols”, PhD thesis, Citeseer, 2012.

[64] L.-S. Huang, S. Adhikarla, D. Boneh, and C. Jackson, “An experimental study

of tls forward secrecy deployments”, IEEE Internet Computing, vol. 18, no. 6,

pp. 43–51, 2014.

[65] C. Cremers, M. Horvat, J. Hoyland, S. Scott, and T. van der Merwe, “A compre-

hensive symbolic analysis of tls 1.3”, in Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, ACM, 2017, pp. 1773–

1788.

[66] E. Rescorla, “The transport layer security (TLS) protocol version 1.3”, RFC,

vol. 8446, pp. 1–160, 2018.

[67] G. Lowe, “A hierarchy of authentication specifications”, in Computer security

foundations workshop, 1997. Proceedings., 10th, IEEE, 1997, pp. 31–43.

https://doi.org/https:/doi.org/10.1016/j.comnet.2005.01.010
http://www.sciencedirect.com/science/article/pii/S1389128605000125
http://www.sciencedirect.com/science/article/pii/S1389128605000125
https://tamarin-prover.github.io/manual/index.html

74 BIBLIOGRAPHY

[68] A. M. Kakhki, S. Jero, D. Choffnes, C. Nita-Rotaru, and A. Mislove, “Taking

a long look at quic: An approach for rigorous evaluation of rapidly evolving

transport protocols”, in Proceedings of the 2017 Internet Measurement Conference,

ACM, 2017, pp. 290–303.

[69] V. Lyubashevsky, “Lattice signatures without trapdoors”, in Annual Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques, Springer,

2012, pp. 738–755.

[70] Ruhrsec 2017: "0-rtt key exchange with full forward secrecy", prof. dr. tibor jager.

[Online]. Available: https://www.youtube.com/watch?v=QmTlzBFQheU.

[71] M. Fischlin and F. Günther, “Multi-stage key exchange and the case of google’s

quic protocol”, in Proceedings of the 2014 ACM SIGSAC Conference on Computer

and Communications Security, ACM, 2014, pp. 1193–1204.

[72] E. Rescorla, 0-rtt and anti-replay (ietf tls working group mailing list). March 2015.

[Online]. Available: https://www.ietf.org/mail-archive/web/tls/

current/msg15594.html.

[73] A. Langley and W.-T. Chang, Quic crypto, 2013. [Online]. Available: https :

//docs.google.com/document/d/1g5nIXAIkN_Y- 7XJW5K45IblHd_

L2f5LTaDUDwvZ5L6g/edit.

https://www.youtube.com/watch?v=QmTlzBFQheU
https://www.ietf.org/mail-archive/web/tls/current/msg15594.html
https://www.ietf.org/mail-archive/web/tls/current/msg15594.html
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit

