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Abstract 
 
 
 
 
 

Transport Layer  Security  (TLS) protocol is one  of the  most  important and  widely 

used  cryptographic protocols that  is introduced to provide secure  communication 

over  Internet.  However, over twenty years, attacks  against TLS show  weaknesses 

and  pitfalls  in the  protocol design  and  implementation.   Therefore, Internet Engi- 

neering Task Force (IETF) is in continuous development to revamp the security of 

TLS by adding new  security features to avoid  the weakness of older  protocol ver- 

sions. 

Many  design  goals were  proposed in many  fields of the TLS protocol to finally 

produce a new secure,  reliable  and  fast version  of this protocol, specifically,  reduc- 

ing the latency  of the key exchange (KE) protocols while  maintaining the security 

guarantees represented by forwarding secrecy.  To achieve this, zero round trip time 

(0-RTT) protocol is a candidate solution. 

We explore  a practical solution to protect the  KE process  and  sends  the  early 

data  in 0-RTT with full Perfect Forward Secrecy (PFS) and preventing the replay  at- 

tack. To this end, we analyze the 0-RTT handshake process using Diffie-Hellman and 

pre-shared keys in TLS1.3; by extending and  updating a previous model  of 0-RTT 

protocol in the TLS1.3 protocol specifications (RFC8446). By studying related work 

which  attempted to solve  the  PFS and  replay  attack  using  either  puncture mech- 

anism  or Google  Quick  UDP Internet Connection (QUIC) protocol, we found that 

both solutions have significant performance drawbacks. 

We present a new  approach to implement 0-RTT based  on TLS1.3 without sac- 

rificing PFS. We support the theoretical approach by practical tests using  a Tamarin 

tool for symbolic modeling and analysis of TLS1.3 security protocols. In the practical 

experiments, we simulate several  attempts to break  PFS using  Tamarin component 

and we verify that the solution guarantees PFS. Moreover, we deduce that attempt- 

ing to solve the PFS problem by Diffie-Hellman using more than one key will require 

a fundamental change  to the structure of Diffie-Hellman which ends up with a new 

protocol that need intensive reviews and studies. 

 

 

 

 

 



 

 المستخلص

 TLS 1.3في بروتوكول أمان طبقة النقل  RTT-0التحقق الآلي والتحليل الرمزي ل 

 إعداد: فادي أبوفرحة

 

 استخدامًا الأكثر التشفير بروتوكولات أهم أحد (TLS) النقل طبقة أمان بروتوكول يعتبر

 تعرض فقد ذلك، ومع. الإنترنت شبكة عبر طرفين بين آمن اتصال يوفر والذي

 التي و عاما، عشرين من أكثر دامت التي المتوالية الهجمات من العديد إلى وتوكولالبر

 مهام فريق فإن ولذلك،. البروتوكول هذا وتنفيذ تصميم في والضعف القوة نقاط أظهرت

 طبقة أمان وتجديد تطوير على للحفاظ مستمر وبشكل بجد يعمل (IETF) الإنترنت هندسة

 إصدارات ضعف لتجنب جديدة أمان ميزات إضافة طريق عن (TLS) الآمنة النقل

  .القديمة البروتوكول

 لإنتاج (TLS) بروتوكول مجالات من العديد في التصميم أهداف من العديد اقتراح تم

 استجابة وقت تقليل وتحديداً البروتوكول، هذا من وسريع وموثوق آمن جديد إصدار

 إعادة في المتمثلة الأمنية الضمانات ىعل الحفاظ مع (KE) المفاتيح تبادل بروتوكولات

 الحل هو( RTT-0ة )الرحل لوقت صفر بروتوكول يعتبر ذلك، ولتحقيق. السرية توجيه

 .المرشح

 البيانات وإرسال (KE) المفاتيح تبادل عملية لحماية عمليا حلً  باستكشاف نقوم نحن

 توجيه إعادة عملية منعو (PFS) التامة السرية على الحفاظ مع(RTT-0) باستخدام المبكرة

 ( RTT-0)  مصافحة عملية بتحليل نقوم لذلك، حقيقا. ت(Replay Attack)  البيانات

 المشتركة المفاتيح استخدام اعادة وكذلك (Diffie-Hellman(DHE)) نظرية باستخدام

 والتعديل التحديث طريق عن ؛( TLS1.3) البروتوكول في (PSK) مسبقاً تبادلها تم التي

 بعض بوضعها قام التي ( (RTT-0 ل السابقة والنماذج الابحاث بعض على افةوالاض

 الآمن النقل طبقة بروتوكول بمواصفات يعُرف ما على المجال هذا في الباحثين

(TLS1.3) .مشكلتي   حل بمحاولة قامت والتي الصلة ذات السابقة الأعمال دراسة بعد 

(PFS) البيانات توجيه إعادة هجوم ومنعReplay Attack) )، الثقب آلية باستخدام 

(Puncture) جوجل بروتوكول أو (QUIC)، يتضمنان المقترحين الحلين كل أن وجدنا 

 .ألاداء سرعة على تؤثر والتي التحديات بعض

 حماية بضمان التضحية دون (TLS1.3) في (RTT-0) لتنفيذ جديد مقترح نقدم نحن

 أداة باستخدام العملية الاختبارات خلل من نظريال النهج هذا ندعم نحن .(PFS) البيانات

 تقوم والتي .(TLS) أمان بروتوكولات وتحليل الرمزية للنمذجة (Tamarin) تمارين

 (PFS) البيانات حماية ضمان لخرق محاولات عدة خلل من الاختراق عملية بمحاكاة

 يضمن اقترحناه الذي الحل أن من بالتحقق بالفعل قمنا ولقد الأداة، هذه عناصر باستخدام

 بواسطة (PFS) مشكلة حل محاولة أن نوضح ذلك، على علوة .(PFS) البيانات حماية

(DHE) واحد مفتاح من جزء من أكثر باستخدام (Key-Share) تغييرًا يتطلب سوف 

.مكثفة ودراسات مراجعات إلى يحتاج جديد بروتوكول تنتج والتي (DHE) بنية في جذرياً
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Introduction 
 
 
 
 

The Transport Layer Security (TLS) protocol is one of the most widely  spread crypto- 

graphic protocols in practice [1]. It is responsible for providing security over Internet 

connection to prevent tampering, message forgery  and eavesdropping. TLS consid- 

ered  as the core of the Internet security infrastructure.  1995 was  the date  of birth 

of this  protocol for the  Netscape company that  named it by Secure  Socket Layer 

(SSL) [1].  This protocol has been  growing up  with  much  attention since that  time 

and has been subject to improvements and updates ever since. 

Most networks all over the world are not secure by itself. To securely  communi- 

cate over these widespread networks, we need secure algorithms, namely protocols, 

which achieve security goals, such as authentication and secrecy. 

TLS is the most important protocol that critically affects business infrastructures 

and  modern networks. It’s important to have  security protocols, but  most  impor- 

tantly  is to verify these security protocols. Therefore, unverified protocols may cause 

the loss of money  or seriously companies’ damages. 

 
 

1.1    Motivation 
 
TLS has been repeatedly suffering from security weaknesses and deficiencies. Either 

on its cryptographic primitive or on the design  of the TLS protocol itself.  Accord- 

ingly,  many  modifications have  been  conducted to this protocol.  Specifically,  after 

the emergence of RC4 and BEAST attacks  in 2011, which led to intense  analysis  and 

academic study that  produces a vast work  in less than  five years  [2]–[8], that  is al- 

most equal to the entire studies that have been done during the past two decades [9]– 

[13]. Many of these studies have revealed weaknesses and proposed great solutions 

in both, manual and automatic analysis  [1]. 

According to TLS security weaknesses, occasional  updates and recurrent modifi- 

cations, TLS becomes  more complicated, as well as the implementation and deploy- 

ment process  becomes  hard  to achieve.  Specifically achieving low latency  overhead 

for the key exchange protocol. Marc et al. [14] have  targeted the 0-RTT protocol in 

order  to raise  up  the  speed  of key exchange.  On  the  other  hand, Felix et al. [15] 

have shown that it is impossible to achieve  PFS and to get secure  against the replay 
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attack  in TLS 1.3 using  0-RTT. However, Google QUIC protocol have prevented re- 

play attack  in key exchange process  but it fails to prevent replay  attack  for the data 

exchange, which  remarks as a logical replay  attack  [14]. This motivates us to seri- 

ously  do our best to find an approach that achieve  full forward secrecy and  get rid 

of replay  attack problem. 

 
 

1.2    Approaches to verify  TLS security properties - 0-RTT 
 

We divide our approaches into; general  approach and specific approach as follows: 
 
 

1.2.1   General Approach: Verifying TLS security properties  in general 
 

This approach shows  the differences between manual and automatic verification of 

TLS security properties alongside with the needed tools. 

Many  approaches have  been  proposed in the  last  few years  in order  to check 

and  verify  the  specifications of the  TLS protocol.  The first approach depends on 

manual verification of security protocols, using successful  methods, for instance, ex- 

ploration [16], induction [17], and belief logic [18] methods. However, this approach 

does  not support automation, which  makes  the manual verification methods hard 

to achieve in practice  according to the unbounded number of sessions. 

Other proposed approach based on automatic tools; AVISPA tool set [19], FDR [20], 

ProVerif  [21], Scyther  [22], and  Tamarin prover [23].  The main  difference between 

these  automatic tools is using  the explore  state  space  that  is exploring all possible 

behaviors, or exploring strict subsets, namely scenario  [24]. 

One  of these  automatic analysis  approaches used  label  transition system  and 

knowledge reasoning to sufficiently and correctly  specify and verify security proto- 

cols using  SeVe tool [25], which support anonymity and privacy  along with security 

properties like authentication and secrecy. 

Another two  powerful approaches are ProVerif  [21] and  Scyther  [22].  ProVerif 

is a protocol-specific abstractions that  reduce the existence  of attacks  on a security 

protocol to the standard problem in logic; namely Horn  clauses.   The Scyther  tool 

does not use any abstraction like ProVerif  does, but both of them  deal with  a linear 

sequence of send  and  receive steps  called roles.  In addition, they both have almost 

the same performance [26]. 

The last approach is adapted from Scyther-proof’s verification theory as a sup- 

portive model  for non-monotonic state  modeling and  includes Horn-theories as a 

special case [26]. This model  is practically implemented in the Tamarin prover tool, 

because  it offers many  unique features; it supports unbounded verifications of se- 

curity  properties, flexible properties, equational theories, global state, and  falsifica- 

tion of the protocols, it also automatically construct many  parallel  interleaved pro- 

tocol roles automatically, it supports loops and branches well and it supports Diffie- 

Hellman (DHE) as a built-in  symbolic  protocol inside  Tamarin [27]. So, we built our 
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approach using  Tamarin prover tool to analyze and update 0-RTT model  in TLS 1.3 

specifications. 
 

 

1.2.2   Specific Approaches:  Verifying 0-RTT security properties 
 
We show  the most  recent  two  approaches that  aimed  to solve  the PFS and  replay attacks  

pitfalls: 

The first approach has  been  invented by Google.   QUIC protocol uses  a third party  

server  to store  the server  key share,  which  allows  the client  to directly send its payload 

data  at the first flight  by combining its own  key share  with  one of the server  key shares.   

The second  approach is done  by Gunther et al. [15], they  took advantage of using a 

puncturing algorithm, which immediately deletes the key used to decrypts the cipher  text 

only  once, then  developing the session  key rather than modifying the related public  key.  

In order  to achieve  this, they  have  used  a secure Hierarchical Identity-Based key 

Encapsulation (HIBE [28]) scheme  to create  many keys out of only one key, more details  for 

these two approaches can be found in 2.1.1 and  5.0.3 sections. 

 
 

1.3    Problem  Statement and Scope 
 
After viewing QUIC, Puncture algorithm and comparing manual vs. automatic ver- ification 

tools, we went through the proactive development process  of TLS 1.3 speci- fication 

protocol, which aims to improve protocol efficiency using the analysis-prior- to-deployment 

process  to address the weaknesses and  to prevent attacks  of TLS1.3 protocol, specifically 

achieving 0-RTT with PFS and preventing replay  attacks before its first release instead of 

using the post-deployment-analysis process  after releasing the TLS1.3 protocol (note: the 

proactive process  used  to be on draft-28 that we were working on, whereas the RFC8446 

has released recently  after defending this thesis). In this thesis,  we look into analyzing and  

updating the model  of 0-RTT protocol in the TLS 1.3 using  an automatic analysis  of a 

security protocol tool called;  Tamarin prover [23]. 

 
 

1.4    Research Objectives and Methodology 
 
The main objective of this study is to analyze the core security properties of the TLS 

1.3 specifications, during the development phase; using the Tamarin prover tool [23]. Mainly, 

our focus on proving the PFS and preventing the replay  attack on 0-RTT KE protocol. 

Proving/disproving  the security properties of PFS and  replay  attack  for 

0-RTT KE protocol. 

In this study, we follow a scientific approach of research;  to analyze and  update the 

model  for 0-RTT in the TLS 1.3 using  Tamarin prover tool.  We accomplish our main 

objective through the following these steps: 



4 Chapter 1.  Introduction  

 
 

1. Selecting  the modeling tool:  TLS 1.3 has  its own  security properties and  KE 

protocols. We are going to use the Tamarin tool to analyze these security prop- 

erties and  create  our own models or update existing  models after testing  and 

verifying the recent models;  to finally achieve  our target  of proving 0-RTT KE 

protocol secrecy in order  to make the entire  protocol clean and safe. 

 

2. Experimental design:  Our experimental process  focus on key exchange meth- 

ods, either  to exchange a list of DHE key shares;  between parties, to be used 

one at a time, then deleting the used  keys; or using  a combination of PSK keys 

to achieves  PFS. Moreover, we need  to find a way to prevent the replay  attack 

problem benefiting from using the ephemeral keys and fresh nonces or message 

authentication code (MAC). 

 

3. Running experiments:  In the  first phase,  we  have  tested,  verified  and  con- 

firmed  the TLS protocol model  that was created by Stettler [29] using  Tamarin 

tool then, we have updated the 0-RTT model  by adding many  DHE key-share 

instead of one. Moreover, we did a combination of pre-shared keys to be used 

in the key exchange process.  We noticed  that we got a positive results,  which 

converts the state of falsified (that denotes attack) in Stettler ’s results to verified 

(which denotes a proof - secure protocol properties) as shown in Table 5.7. 

 

4. Evaluating the results:   We compared our  results with  Stettler ’s results then, 

we made  sure  that  our  results are compatible with  the TLS security protocol 

properties and if they are acceptable and achieve the TLS constraints. 

 
 

1.5    Contributions 
 

The main  two  folds  contributions in this  thesis  are  proving the  PFS and  prevent- 

ing  replay  attacks  for 0-RTT KE protocol, by proposing two  methods, firstly,  we 

used  DHE hand shake  KE protocol to theoretically prevent replay  attacks  by creat- 

ing a list of ephemeral keys-shares for the client and  the server,  (clientshare : x1  = 

ga1 , x2  = ga2 , x3  = ga3 ...etc., servershare : y1  = gb1 , y2  = gb2 , y3  = gb3 , ...etc.)  these 

key-shares are exchanged between the parties in order  to use them  once per a ses- 

sion resumption, then  vanishes, and  regenerate another list before  consuming the 

last key.  Secondly,  we used  a PSK method to achieves  PFS by combining multiple 

pre-shared keys (psk  = H K DF (< psk1, psk2 >)), which  allows  the client to send 

early  data  with  0-RTT in the first flight  of KE process  alongside with  keeping the 

PFS. To this end,  we have  tested,  verified,  confirmed, and  partially updated some 

of security properties of TLS 1.3 protocol that done by Stettler [29]. Specifically, PSK 

using the Tamarin prover tool to model the protocol handshake process and the flow 

of messages between parties. 
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1.6    Outline 
 

This thesis contains six chapters, which structured as follows: 

Chapter 2 the foundation; including the history of Transport Layer Security protocol, 

through the development process  of this protocol including threats, flaws and mod- 

ification,  showing the weaknesses and  strengths of TLS protocol, and  introducing 

cryptography basics.  Chapter 3 presents more about  the TLS attacks.  We introduce 

the Tamarin prover tool in chapter 4. Chapter 5 includes modeling, analyzing and 

updating the TLS1.3 besides  0-RTT models using  Tamarin tool.  Then conclude and 

results take place in Chapter 6. 
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Chapter 2 
 
 
 

Transport Layer Security  (TLS) 

Foundation 
 
 

 
Internet connection becomes  one of the most important part of our lives, even more, 

the Internet has changed our lives. The world around us becoming more connected 

day after another, especially with the massive  widespread of computers and smart- 

phones, which  we use to communicate, pay bills, shop  online,  travel,  bank transac- 

tions and much  more.  In order  to do these operations, we need  a secure  protocol in 

common, to protect our transmitted data across these interconnected devices  [30]. 

 
 

2.1     TLS Protocol 
 

The Internet connection was initially  limited to number of users.  For instance, uni- 

versities  have  used  it in scientific  research.  Therefore, no need  for a high  level of 

protection. Meanwhile, the communication protocols were  implicitly insecure [30]. 

However, with the widespread of Internet connection and the emergence of e-commerce 

websites, the  need  for a strong  and  secure  protocol has  emerged.  Consequently, 

In 1995, Netscape released the first version  of TLS protocol, namely SSL protocol1, 

which  is one of the most  important and  widely  used  cryptography protocols that 

was introduced to provide secure communication over insecure infrastructure [1]. 

TLS protocol is one of the most important and widely  used  cryptography proto- 

col that provides secure  communication between two parties to exchange messages 

over TCP protocol. 

The properly developed SSL/TLS protocol provides the client with a secure com- 

munication channel to the intended server,  the information will arrive  correctly  and 

safely with no tampering or content  change  by others,  protecting the transport layer 

link, which  is the reason  for naming the protocol as TLS. Besides the TLS security 

goals that are represented as follows: 

 

• Cryptographic security:  Enable  exchanges the information between two par- 

ties in a secure communication by selecting  the cryptographic algorithms. 
 

1 SSL is the predecessor protocol for TLS: The same protocol with two names  (SSL/TLS). 
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• Interoperability: Developers have the ability to use the common cryptographic 

parameters under the same framework to build  their  libraries,  code, and  pro- 

grams  that easily intersects with each other without errors (Briefly: write once, 

run everywhere). 

 

• Extensibility:  TLS effectively  deals  with  actual  cryptographic protocols as a 

reference  framework for deployment and  development, aiming  at allowing 

migration between the  existing  primitives instead of creating new  protocols 

and to be independent of the actual cryptographic primitives used. 

 

• Efficiency: Achieving an acceptable performance cost, providing session cache 

scheme and minimizing the costly cryptographic to insure  achieving the above 

three goals. 
 

 

2.1.1   TLS Protocol Brief History 
 

The SSL/TLS  protocol has a long  history,  back to November 1994 when  Netscape 

released the second  version,  called SSL2.0 after the first version  had  cryptographic 

flaws and  never  saw the light.  The second  version  didn’t  last longer,  after the first 

deployment of SSL2.0 using  Netscape Navigator version1.1  in March  1995, it had 

cryptographic and practical flaws, because  Netscape did not ask for any expert  con- 

sultation from outside. Few months later, Netscape comes out with a stronger, more 

secure and new design  version  namely SSL3.0 protocol. 

In May 1996, after political  issues and a real competition between Netscape and 

Microsoft to control the Web, both companies have agreed to support the IETF taking 

over the protocol, which  leads  to release  TLS1.0 in January 1999, as RFC2246. The 

TLS1.0 is the same as SSL3.1 that is an adapted version  of SSL3.0, done  by IETF. 

In April 2006, TLS1.1 was released including only security fixes. Taking  in con- 

sideration the incorporation of TLS extensions that  were  released in June 2003 as a 

major change  to TLS1.0. 

In August 2008, TLS1.2 was  released, all hard-coded security primitives were 

removed from the specification and additional support for authenticated encryption. 

These modifications increased the elasticity  of the protocol. 

A few months ago,  while  working on this  thesis,  in August 2018, TLS1.3 was 

lastly  released after  a hard  work  by the  IETF working group to make  it stronger, 

less complex,  and  optionally faster if using  0-RTT, taking  into account  the trade-off 

between speed  versus weaker anti-replay attacks.  But, we are still able to use 0-RTT 

in some cases where  the impact  of replay  attack is less severe or the level of security 

offered  by TLS1.3 is not  required.  However, we  propose a solution to the  0-RTT 

problem to prevent replay  attacks  and the PFS problem as well. 



8 Chapter 2.  Transport Layer Security (TLS) Foundation  

 
 

Zero Round-Trip Time (0-RTT) 
 

The time between sending a message back and  forth  between two parties is called 

round-trip time  (RTT) during the  key  exchange process  (KE). Reducing the  com- 

plexity of this round-trip time was the major concern of the KE protocols’  designers. 

Many low-latency designs for KE has been proposed in several researches [31], [32]. 

Google’s QUIC protocol and  TLS 1.3 protocol are practical examples that estab- 

lish an initial key in zero round-trip time 0-RTT, which  allows  the client to send  his 

key share  message alongside with early data  to a pre-visited server.  It’s known that 

the client  key-share without the server  key-share contribution does  not guarantee 

the same  strong  security as standard key exchange protocols (classical KE protocol 

that  needs  a full round-trip time).  Particularly, the forward secrecy cannot  be pro- 

vided by the  initial  key-share since  no shared state  between sessions.   Moreover, 

most  of the keying  material is compromised after  running the KE protocol except 

the ephemeral keying  material. The protocol achieves  forward secrecy in the second 

step; after the server  contributes its key-share. 

 
 

2.2    TLS Location  in Network Layers 
 

IP and  TCP protocols are considered major  pillars  of Internet construction, which 

are responsible for good, solid, and reliable communication between two entities  on 

the network over the familiar Internet Protocol (IP) address, in order to send/receive 

data  packets  across many  computer nodes  (hops)  for a long or short  path.  This in- 

secure  path  makes  the transferred data  vulnerable to be stolen  or hijacked,  this is 

because  the IP and the TCP protocols do not provide security by themselves. Many 

other  vulnerable protocols, such  as BGP can be exploited by the attackers.  More- 

over,  the attacker may  replace  these  routing protocols, and  redirect the connection 

to himself. 

Even though the attackers might  be able to hijack the encrypted data,  they  still 

cannot  decrypt it.  To guarantee message authenticity, TLS uses  the Public-Key  In- 

frastructure (PKI) algorithm. 

As shown in Table 2.1, the known Open  Systems  Interconnection (OSI) model, 

which includes seven layers, starting from the physical layer up to application layer. 

The SSL/TLS  lays  between TCP and  application layer,  we  can still work  directly 

with  TCP and  remove  SSL/TLS  from  our  model  -if the  encryption process  is not 

necessary- without affecting  other  protocols. When  there  is a necessity  for encryp- 

tion, we just use SSL/TLS to encrypt HTTP. Moreover, we can encrypt other  impor- 

tant protocols, such as SMTP, IMAP and any other TCP protocol. 
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TABLE 2.1: OSI Model Layers 

 
Layer No. OSI Layer Function/Description Examples Protocol 

 

Layer7 
 

Application 
 

Application data 
HTTP, SMTP, 

IMAP 
 

Layer6 
 

Presentation 
Data representation, conversion, 

encryption 

 

SSL/TLS 

 

Layer5 
 

Session 
Management of multiple 

connections 

 

Net-BIOS, Sockets 

 

Layer4 
 

Transport 
Reliable delivery of packets 

and streams 

 

TCP, UDP 

 
Layer3 

 
Network 

Routing and delivery of 

datagrams between network 

nodes 

 
IP, IPsec 

 

Layer2 
 

Data link 
Reliable local data 

connection (LAN) 

 

Ethernet 

 

Layer1 
 

Physical 
Direct physical  data connection 

(cables) 

 

CAT5 

 

 

2.3    TLS Cryptography 
 
Cryptography was almost  limited to military, diplomatic and  government applica- 

tions till the 1970s, then some financial and telecommunication industries start using 

it during the 1980s. Nowadays, cryptography has become one of the most important 

topics in our daily life. For instance, shopping using credit card, voice-over-IP phone 

calls, e-health applications and the evolution of smart cities will make cryptography 

even more ubiquitous. 

Today,  cryptography algorithms are much  stronger, security definitions are bet- 

ter understood, and  new  algorithms have  replaced the  old  broken  ones.   A lot of 

intersection between computer science,  math,  and  electrical  engineering areas  to 

produce a secure  cryptography system,  which  means,  we  need  to combine  more 

than one scientific field to finally get secure cryptographic methods/systems. 

Paar et al. [33] defines  Cryptography as " The science of secret writing with  the 

goal of hiding the meaning of a message".  Which was the first branch  of cryptology. 

The second  branch  is cryptanalysis, which is a way of breaking cryptosystems to get 

the plaintext without a need  to know  the encryption details.  The cryptanalysis is a 

way of securing the system.  Since, without cryptanalysis, we will never know  if our 

system is secure or not. So, many researchers use this technique to check the security 

level of the system. 

Cryptography includes the main branches: 

Symmetric Algorithms: Is the way for two parties having an encryption and decryp- 

tion methods to communicate and exchange the data securely  with each other, using 

the same  shared secret key.  Symmetric methods were  solely the base of cryptogra- 

phy from antiquity until 1976. Data encryption and messages integrity check are still 

done  by symmetric ciphers. 
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Asymmetric Algorithms (Public  key):   Whitfield Diffie,  Martin  Hellman, and 

Ralph Merkle have introduced different types of encryptions methods in 1976 rather 

than the symmetric key, the main difference is that the user has another key (Public- 

key) and the private key that introduced in the symmetric key cryptography. We can 

use asymmetric algorithm in digital  signature, key establishment, and data  encryp- 

tion. 

Cryptographic Protocols:  The secure  Internet communications applications can 

be accomplished through the symmetric and asymmetric algorithms that considered 

to be a building blocks. TLS is an example of cryptographic protocols that deals with 

cryptographic algorithms [33]. 

Cryptographic Hash Function: 

A hash  function is a compressed fixed length  output of a numerical value  for an 

arbitrary length  of the same numerical input value. 

The properties of cryptographic hash  function is summarized in Pre-Image Re- 

sistance,  which prevents reversing the hash function process.  Second Pre-Image Re- 

sistance,  which prevents to find the same hash result  for different inputs -each input 

value  has its unique hash  result.  Collision  Resistance,  which  makes  it impossible to 

have the same hash function result for two different inputs. Many hash functions can 

be used  to protect the password storage  and  data  integrity check, such  as message 

Digest family (MD5), Secure Hash Function family (SHA) and Message  Authentica- 

tion Code (MAC) that provides authentication using a symmetric key cryptographic 

technique, and many  other hash functions [30]. 
 

 

2.3.1   Symmetric Encryption 
 

The symmetric encryption has been used thousands of years ago. The case with most 

early ciphers  is to keep the method itself secure.  For instance, the substitution cipher 

method for encryption is replacing each alphabet letter  with  another one ( replace 

A to k, B to d, C to w).  We reverse  the process  for decryption.  Many  approaches 

were  adopted over  time.   One  approach in the  19th  century for a cryptographer 

Auguste Kerckhoffs:  "A cryptosystem should be secure  even if the attacker knows 

everything about  the  system,  except  the  secret  key".   Kerckhoffś  principle makes 

sense considering the following: 

 
• To have  useful  encryption algorithm, others  must  share  it.   The greater the 

number of people  with  access to the algorithm, the probability of falling  the 

algorithm in the enemy’s hands will increase  too. 

 

• It’s inconvenient to use a none-key single algorithm in large groups; since the 

communication decryption is allowed by everyone. 

 

• The design  of a good  encryption algorithm is very  hard.   The more  inspec- 

tion,  observation, and  examination for the algorithm, the more  secure  it can 

be.  Usually,  cryptographers need  many  years  of breaking attempts to make 
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sure their cipher is secure.  So, they recommend a conservative approach when 

adopting new algorithms [30]. 

 

When  the  attacker couldn’t  analyze or retrieve the  plaintext, in this  case,  we 

could  say the encryption algorithm is good  (secure)  especially when  the ciphertext 

is randomly produced.  For instance, the attacker could  easily  reveal  the substitu- 

tion cipher  by inspecting the frequent letters,  which  as known in English  language 

that  the frequent of some  letters  repeated more  often  than  others,  which  leads  the 

attacker to reveal  the plaintext by observing these  frequent letters.   So, obviously, 

the simple  letter substitution cipher  is not a good  algorithm. Otherwise, if we have 

a good  cipher,  the attacker has to try all possible  decryption keys, which  know  as 

Brute-Force  or exhaustive key search. 

We conclude that,  the  key  is the  main  factor  of the  ciphertext security.  So, if 

the selection  of the key from a large keyspace and  many  iterations have been done 

to break  the encryption through large  number of possible  keys,  then  the cipher  is 

computationally secure. 
 

 

2.3.2   Stream Ciphers 
 

A keystream is producing an infinite  stream of random data  from a stream cipher. 

For encryption, one byte of keystream is combined with one byte of plaintext using 

XOR operation. Vice-versa  for decryption process,  which  done  XORing the cipher- 

text with the same keystream byte as shown in FIGURE 2.1. 

 

 
 

FIGURE 2.1: Stream  Cipher process  [34] 
 

 

If the attacker couldn’t  predict the position of each key-stream bytes, which key- 

stream bytes  are at which  position?, then  we say that  the encryption process  is se- 

cure.  So, it’s recommended to use the stream ciphers  just once with  the same  key, 

and  that’s because  the attacker can predict the plaintext at certain  locations, practi- 

cally; when  we encrypt HTTP connection, all requests (e.g., protocol version,  header 

names)  will be the same during the same connection. 

Knowing the plaintext and  having access to the correspondent ciphertext, will give 

the attacker opportunity to reveal  parts  of key-stream, using  the same  information 

will reveal other  parts  of ciphertext in the future;  if the same key reused. To get rid 
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of this issue, we could  derive  and use one time keys from long-term keys in stream 

algorithms. 
 

 

2.3.3   Block Ciphers 
 

Block ciphers  encrypt the whole  blocks of data  at a time.  Most block ciphers  nowa- 

days  use 16 bytes  block size (128 bits).  A block cipher  takes  some  input data  and 

transforms it to random output. Using the same key will produces exactly the same 

output for the same input combination. A small variation of input produces a large 

variation of output. 

Block cipher have some limitations. For instance, the produced output is always 

the same  for the same  input (deterministic problem), which  makes  it vulnerable to 

attacks.   Also,  the  encryption of data  has  a limited length  equal  to the  block  size 

length  [30]. 

In practice,  block cipher modes  are encryption schemes  that use the block cipher 

to decrease the limitations and  to add  authentication for the process.  Some crypto- 

graphic primitives (e.g., MAC, pseudo-random generators, and hash functions) also 

uses block ciphers  as a base for the encryption process. 

Advanced Encryption Standard (AES) that is available in different strengths (128, 

192, and 256 bit) is the most popular block cipher [30]. 
 
 

2.3.4   Padding 
 

Padding is the  extra  data  to be added/appended to the  plaintext when  the  block 

size is less than 16-byte when  using  128-bit AES, which  is one of the approaches for 

handling the encryption of data  lengths that  are smaller  than  the encryption block 

size. 

The padding must  consist  of a distinct data  and  the number of bytes to be dis- 

carded must  be known to the receiver.  For instance, the padding length  of TLS can 

be found in the last byte of an encryption block, which  determines the number of 

padding bytes. All padding bytes shares  the same value as the padding length  byte. 

Finally, the receiver  has the ability to check the correctness of the padding. 

 

 
 

FIGURE 2.2: TLS padding illustration [30] 
 

 

The last byte of the data  block contains the number of padding to be removed, 

the receiver removes it first, then the indicated number of bytes will be removed too, 

as shown in FIGURE 2.2. 
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2.4    Protocols Overview and Structure 
 

SSL/TLS includes two layers of protocols as shown in FIGURE 2.3; TLS  Handshake 

protocol produces a cryptographic parameters that used  by the secure  channel. This 

Handshake protocol takes  place  at a very  first  step  of communication between the 

client  and  server.   This allows  the negotiation about  the protocol version  between 

peers, choose cryptographic algorithms and establishing shared secret keying  mate- 

rial. After completing the handshake process,  the established keys are used to protect 

the application layer  traffic.  Any error  or failure  of the   Handshake protocol causing 

the termination of the connection and sometimes an alert message precedes this ter- 

mination. The  Handshake protocol includes cipher  specs, SSL Alert, and  HTTP/FTP 

to provide security for the second  upper layer protocol;  namely the Record Protocol, 

which provides a secure session between two or more parties. 

 

 
 

FIGURE 2.3: Structure of SSL/TLS Protocol  [35] 
 

 

TLS record protocol is a layered protocol.  Each layer  consists  of messages that 

include fields for description, length,  and  content.   The record  protocol (sender) is 

responsible for data fragmentation (by segmenting it into a number of chunks), mes- 

sage transition, besides  optional data  compression, applying/computing the MAC, 

data  encryption using  corresponding MAC,  and  transmission of the  results.    On 

the other  side (receiver);  the backward operation is needed for decrypt, verify,  de- 

compress, reassemble the received data,  and  finally deliver the data  to higher-level 

clients.   Compression is disabled in SSLv3.0 and  above  [35] since  it is vulnerable 

to one of the brute  force attack  (CRIME attack).   SSL/TLS  record  protocol creation 

operations shown in FIGURE 2.4. 

Fragmentation done  to every  received messages, the maximum allowed chunk 

size is 214  [35] bytes.   But when  applying compression; the length  of chunk  is not 

more than 1024 [35] bytes. 

Compression Algorithms: Compression techniques used  to decrease data  size 

without any loss of data.(e.g., LZ77, GZIP etc.) 

Hash  Algorithms: Hash  functions provide integrity to data  chunks (e.g., MD5, 

SHA-1, SHA-256 ) 

Encryption Algorithms:  Data  could  be encrypted using  symmetric stream or 

block  cipher  techniques to create  SSL payload.  In the  stream cipher  encryption; 

chunks and  MAC are encrypted together. Before block cipher  encryption padding 
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FIGURE 2.4: Operations of SSL/TLS Record Protocol  [36] 
 

 
bits are added to both MAC and  chunk.  Table 2.2 shows  the encryption algorithms 

with their key sizes. 

 

TABLE 2.2: (Stream & Block) Cipher Encryption [35] 

 
Stream Cipher 

Algorithms Key Sizes (bits) 

RC4 40, 128 

Block Cipher 

Algorithms Key Sizes (bits) 

3DES 168 

AES 128, 192, 256 

DES 56 

Fortezza 80 

IDEA 128 

RC2 40 

 
The Change Cipher Spec Protocol is the simplest protocol with one byte single mes- 

sage holding the value  1, used  to update the current state  by copying the pending 

state on it, to finally change  the used  cipher suite. 

The Alert Protocol is used  to announce the compressed and  encrypted alert mes- 

sages related to SSL protocol negotiation faults; to peer devices.  Alert protocol mes- 

sage is two bytes long; one byte includes two values:  (one 1) for warning and  (two 

2) for fatal, the fatal terminates the specific connection directly. However, the other 

connections during the same session continue working; but no new connections will 

be established. The other  byte contains specific alerts  represented by specific code 

that  indicates the severity degree,  as shown in Table 2.3.  Three  fields included in 

the handshake protocol ( type: represented in 1 byte, length:  represented by 3 bytes, 
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TABLE 2.3: Alert Protocol  Messages [35] 

 
Code Alert Representations Type 

 

0 
 

close_notify 
No more messages on this link to 

receiver 

 

1 

10 unexpected_message Inappropriate message to receiver 2 

20 bad_record_mac Incorrect  MAC record  to receiver 2 
 

21 
 

decryption_failed 
Invalid decryption due to improper 

chunk  size 

 

2 

 

30 
 

decompression_failure 
Decompression fail due to improper 

input 

 

2 

 

40 
 

handshake_failure 
Negotiation fail due to improper 

security parameters set 

 

2 

 

41 
 

no_certificate 
Reply to no proper certificate is 

available 

 

1 

 

42 
 

bad_certificate 
Corrupted certificate or contains 

invalid signature 

 

1 

43 unsupported_certificate Sender certificate is unsupported 1 

44 certificate_revoked Certificate  was withdrawn by signer 1 

45 certificate_expired Issued  certificate is no longer  valid 1 

 
46 

 
certificate_unknown 

An uncertain problem causes 

certificate to be inappropriate while 

handling 

 
1 

 

47 
 

illegal_parameter 
Security parameter are inconsistent 

with respect  to their field in handshake 

 

2 

 
 

and content:  greater than or equal to 0 bytes for associated parameter with the mes- 

sage) code and security parameters for handshake messages shown in Table 2.5 and 

Table 2.4. SSL Handshake Protocol: Before the connection is established by the record 

 

TABLE 2.4: Cipher Suites for SSL [35] 

 
Parameters Values 

Key exchange algorithms RSA, Diffie-Hellman, Fortezza 

Cipher  algorithm RC4, RC2, DES, 3DES or IDEA,Fortezza 

MAC algorithm MD5 or SHA 

Cipher  type Stream or Block 

MAC size MD5(0 or 16 bytes) or SHA (20 bytes) 

IV size Initialization vector size used  in CBC 

 
protocol;  here comes the handshake protocol to allow client and server  to exchange 

the needed parameters (e.g., cipher  suite,  Identities, nonces)  before  start  exchange 

the application data as shown in FIGURE 2.5. 
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FIGURE 2.5: Operations of Handshake Protocol  [35] 
 
 

2.5    TLS1.3 New Features 
 

TLS1.3 came with major changes  to TLS1.2, some of these key changes  are: 

 
• Adding 0-RTT mode  to save round trip connection for application data,  sacri- 

ficing some security properties. 

 

• Version  negotiation was  removed to increase  compatibility for servers  which 

fail to implement version  negotiation. 

 

• Single new PSK exchange has replaced session  resumption with  and  without 

server-side state and PSK based  cipher suites. 

 

TLS1.3 Exchange Modes Diffie-Hellman (DHE), pre-shared key (PSK) exchange 

and  a combination of both; (DHE and  PSK) are the three  key exchange modes  with 

different properties that  offers  an elastic  security guarantees for the  TLS1.3.  This 

allows session resumption and early data transmission. 

TLS1.3 offers three  post-handshake mechanisms, post handshake client authen- 

tication,  and sending new session ticket (NST) by a PSK for subsequent resumption, 

to cover the traffic key updates. The communication between parties must  be docu- 

mented and both parties need to agree on. 
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TABLE 2.5: SSL Handshake Messages [35] 

 
Codes Messages Type Parameters 

0 hello_request Void 
 

1 
 

client_hello 
version,  random_no, session_id, 

cipher_suite, compression_tech 
 

2 
 

sever_hello 
version,  random_no, session_id, 

cipher_suite, compression_tech 

11 certificate X.509 certificates  chain 

12 server_key_exchange msg_signature, public_parameters 

13 certificate_request cert_authorities, cert_type 

14 server_done Void 

 client_key_exchange msg_signature, public_parameters 

15 certificate_verify cert_signature 

20 finished MD5_hash,  SHA_hash 
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Chapter 3 
 
 
 

Attacks on TLS 
 
 
 
 

TLS has been vulnerable to several  majors  attacks,  especially on the most  common used  

ciphers  and its modes  of operations. For instance, RC4 and AES-CBC suffered from  serious  

attacks;  since  a combination of both  is widely  used  in TLS context. More about  the major 

attacks  on TLS can be found in [37]. 

According to an old saying  to the US National Security Agency  "Attacks always get 

better; they never get worse", therefore the attacks  will never stop. 

As there  are many  attacks  on TLS protocol, there  are a lot of security solutions 

recommendation that  have been proposed by IETF [38], the FIGURE 3.1 shows  the attacks  

and analysis  line for TLS protocol followed by number of TLS attacks: 

 

 
 

FIGURE 3.1: Attacks  and Analysis Line on TLS protocol [39] 
 
 

 
3.0.1   SSL Stripping 

 
Stripping attack introduced by Moxie Marlinspike in 2009 [40]. This attack prevents the  use  

of SSL/TLS,  by exploiting and  modifying unencrypted protocols, such  as HTML and 

HTTP that requests the use of TLS. 

Stripping attack  has  derived from  downgrade attack,  which  is more  general. These 

attacks  affects; only if the user  starts  accessing  web servers  using  HTTP. The HTTP Strict 

Transport Security (HSTS) specification was subsequently developed to mitigate these 

attacks. 
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3.0.2   STARTTLS Command Injection Attack 
 

This attack  targets the transmitted packets  between unprotected and  TLS protected 

traffic.  Many  application level commands (e.g., STARTTLS) used  by IETF applica- 

tion protocols to upgrade the cleartext  connection in order  to use TLS. The attackers 

exploited a flaw in STARTTLS, which  is retaining a pipelined STARTTLS command 

with  an application layer  input buffer.  These commands received prior  to TLS ne- 

gotiation and executed after TLS negotiation. To solve this problem, it’s required to 

keep  the application level command input buffer  to be empty  before  TLS negotia- 

tion.  Well, this flaw does not affect the TLS protocol directly since it’s considered to 

reside  in the application layer code. 

As STARTTLS is vulnerable to downgrade attacks,  other similar mechanisms are 

vulnerable too.   It is a simple  mission  for the  attackers; they  have  just to remove 

the STARTTLS indication from the HTTP/unprotected request. Adding HSTS-like 

solutions will mitigate the attack [41]. 
 

 

3.0.3   BEAST 
 

The BEAST attack  targets TLS1.0 and  earlier  versions.  BEAST has  violated origin 

policy constraints for the cipher  block chaining (CBC), which  is the predictable Ini- 

tialization Vector (IV). To this end, Duong  and Rizzo exploit this known weakness in 

IV construction in 2011. They predict the IV to decrypt small parts of a packet (HTTP 

cookies) when it’s run over the TLS protocol. The problem was solved in TLS1.1 [41], 

[42].  Duong  and  Rizzo, have  proved that  the attacks  get better  with  time,  and  we 

have to seriously deal with  any small weaknesses (e.g., IV weaknesses) and  do not 

ignore  them since they could grow big eventually. 

To make  BEAST attack  works,  the  attackers have  effectively  reduced the  CBC 

mode  to Electronic  Code  Book (ECB) mode.   ECB splits  input data  into blocks and 

individually encrypts each block. The problem with this approach is that; the output 

data  of a block is always the same for the same encrypted block. This facilitates  the 

attacker ’s job and makes  it possible  to guess the plaintext, as follows: 

 
1. The attacker monitors the size of encrypted blocks, which  depends on the en- 

crypted algorithm, for example, 16 bytes for AES-128. 

 

2. The attacker submits 16 bytes of plaintext for encryption since he could  guess 

the  whole  block at once,  in addition, any  difference in any  bit of input will 

affect all output bits. 

 

3. The attacker monitors the encrypted block and compare it to the ciphertext in 

the first step  if there  is no difference, then  we have  the first correct  guess,  or 

the attacker goes back to the second  step. 

 

Note: The attacker can guess one block at a time. So, the attacker needs  to make 2127
 

guesses on average in order  to guess 16 bytes only. 
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In order  to hide patterns in the ciphertext. The CBC masks every message before 

encryption using  IV, which  is differentiate it from  ECB. Moreover, the  ciphertext 

output is not  always the  same  for the  same  input block.   Therefore, the  attacker 

couldn’t  guess the plaintext like ECB. 

To have an effective IV, we need to make it unpredictable for each message. Many 

unfeasible solutions have been proposed, but the practical one in CBC is to use only 

one block of random data at the beginning, then the output of the current block used 

as input for the next block, which also known by chaining. The chaining approach is 

safe, if and only if the attacker is not able to monitor the encrypted data.  else, if the 

attacker could reach one encrypted block, so he will have the IV for the next. TLS 1.0 

and earlier deals with the entire connection as a single message and use the random 

IV for the first TLS record.   All following records use  the last encryption block as 

their IV. The attacker could see all the encrypted data; so he knows  the IVs from the 

second  one and  above.  TLS 1.1 and  1.2 do not suffer from this weakness since they 

use per-record IVs. 

Finally,  the  protocol is still vulnerable to a blockwise chosen  plaintext attack. 

CBC effectively  downgrade to EBC when  the IV is predictable. FIGURE 3.2 shows 

the  attack  against CBC with  predictable IV. The  figure  includes three  encrypted 

blocks;  the browser sent two  of these  blocks,  while  the third  one has been  sent by 

the attacker through the browser. 

 

 
 

FIGURE 3.2: BEAST attack against CBC with predictable IV [30] 
 

 

The IV of the first block is unknown, so the attacker targets the second  block to 

reveal its content.  The attacker knows  the I V2 after seeing the first block. The same 

goes with  I V3  after seeing  the second  block.  Moreover, the second  block C2  is also 

known to the attacker. 

The attacker now has seen the first two blocks, the attacker keeps  observing the 

encrypted version  on the wire.  The IVs are all known to the attacker, so the effect 

of IVs is eliminated from attacker guesses.  When the attacker complete guessing is 
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successful, then  the C3  (an encrypted version  of the guess)  will be the same  as C2 

(the encrypted version  of the secret). 
 
 

3.0.4   Padding Oracle Attacks 
 

The MAC-then-encrypt design  is used  in all versions of the  TLS protocol, which 

leads to the padding oracle attacks  [43]. The Lucky Thirteen attack  [3] and a timing 

side-channel attack  that  helps  the attacker to decrypt arbitrary ciphertext are sam- 

ples of padding oracle attacks. 

We can mitigate the Lucky Thirteen attack using  authenticated encryption, such 

as AES-GCM [44] or using  encrypt-then-MAC [45] instead of MAC-then-encrypt. 

The latest version  of the padding oracle attack is POODLE attack [46] on SSL 3.0, no 

timing  information used  in this attack. 
 

 

3.0.5   Attacks on RC4 
 

The RC4 algorithm [47] has been firstly used  with SSL then TLS for years.  RC4 suf- 

fered from different kinds of cryptographic weaknesses for a long time (e.g., [48], [49], 

[50]). The biases property in RC4 keystream is one of the weak points  that attackers 

exploit to retrieve the plaintexts that have been encrypted many times [41], as shown 

in cryptanalysis results [51]. 

According to the result  of 2014, which  inform  us that  most  of the above  attacks 

are practically exploitable. We conclude that RC4 doesn’t  provide an adequate level 

of security for TLS, The link1  includes more details. 
 

 

3.0.6   Compression Attacks: CRIME, TIME, and BREACH 
 

Active attacker is able to decrypt ciphertext (HTTP cookies) using CRIME attack [52]. 

This attack  happens when  using  compression with  TLS level.  Both TIME [53] and 

BREACH [54] attacks  decrypt the  secret  data  passed in the  HTTP response using 

HTTP level compression. Most attackers prefer the use of HTTP message body com- 

pression more than compression at TLS level. 

In order  to mitigate TIME attack,  we just need  to disable  TLS compression. No 

information available about BREACH attack mitigations at TLS protocol level, there- 

fore, application level mitigations are needed [54]. For instance, HTTP implemen- 

tations  that  use Cross-Site  Request  Forgery  (CSRF) tokens  will need  to randomize 

them. 
 

 

3.0.7   Certificate and RSA-Related  Attacks 
 

When  using  TLS with  RSA certificate  many  practical attacks  have  shown up,  the 

most used  attacks  are Bleichenbacher [10] and  Klima [13]. Bleichenbacher has been 

mitigated in TLS 1.0, while Klima that relies on a version-check oracle in TLS 1.1. 
 

1 
https://tools.ietf.org/html/draft-ietf-tls-prohibiting-rc4-01. 
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The exploitable timing  issues, such as Brumley  [55] are often involved when  us- 

ing RSA certificates.   Unless  they  are explicitly  eliminated by the implementation. 

Many  vulnerabilities have  been uncovered in different TLS libraries  related to cer- 

tificate validation; using  the certificate fuzzing tool namely Brubaker [56]. 
 

 

3.0.8   Theft of RSA Private Keys 
 

Any encrypted sessions  that were initiated by any server  using  TLS with most non- 

Diffie-Hellman cipher suites can be easily decrypted by obtaining and using the pri- 

vate key for that server.  The popular Wireshark network sniffer uses this technique 

in order  to inspect  TLS-protected connection. 

A large-scale monitoring [57] for certain  servers,  including stealing private keys, 

active or passive  wiretaps (eavesdrop), and traffic analysis  were used  as part of per- 

vasive  monitoring.  The mitigations for such  attacks  through better  protecting the 

private key, for instance, using  hardware solutions or operating system  protections. 

Moreover, using cipher suites for forward secrecy, which prevent the passive  attack- 

ers of exposing the past or future sessions,  even if they could reveal the private key. 
 

 

3.0.9   Diffie-Hellman Parameters 
 

The Cross-Protocol attack  [58] exploits  the interactions between the different cipher 

suites.  Specifically,  when  the client incorrectly interprets the signed  Elliptic Curve 

Diffie-Hellman ECDH key parameters as valid plain Diffie-Hellman. 

The adversary could  impersonate the  server  and  use  it as an  oracle  that  pro- 

vides  signed  parameters, then  start  sending these  signed  valid  parameters to the 

victim  clients.   In order  to mitigate Cross-Protocol attack,  we  can  use  predefined 

DHE groups [59]. 

Additionally, the  client  has  to properly verify  any  received parameters, or he 

will be vulnerable to MITM attack.   It is unfortunate that,  the  TLS protocol don’t 

offer this  verification, more  information about  analogous information for IPsec in 

RFC6989 [60]. 
 

 

3.0.10   Renegotiation 
 

SSL and  TLS renegotiation are vulnerable to an attack  in which  the attacker creates 

a TLS connection with the server, sends  some content  data to the server,  at the same 

time; the attacker creates  a new  TLS connection with  the client, who  sends  his ini- 

tial TLS handshake to the server,  which  treats  it as a renegotiation, considering the 

initially  transmitted data  by the attacker as a subsequent from the real client.  The 

attacks  and it’s resolved found in RFC5746 [61]. 
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Chapter 4 
 
 
 

Tamarin Prover for Security 
 

Protocols Modeling 
 
 
 
 

There  are  many  ways  to verify security protocols.  In this  thesis,  we focus  on au- tomatic  

verification of security protocols in symbolic  models of cryptography.  Ex- tended the scope 

of automatic verification; to cover more practical security problems has been subjected to 

much  research. However, it is impossible to verify all security protocols.  Since (in general)  

there  are many  requests from  the server  at the same time,  therefore verifying all security 

properties needs  more  time,  so we decided to focus on verifying PFS and preventing the 

replay  attacks  in our thesis. 

We use  Tamarin prover tool [62] for automatic verification. Tamarin supports 

automatic falsification  and  verification of protocols, benefit  from  loops  and  non- 

monotonic states,  and  of protocols that use Diffie-Hellman exponentiation to fulfill 

resilience  against adversaries. 

This chapter explains  the automated analysis  for some security protocols using 

constraint-reduction rules [29]. 

 
 

4.1    Automatic Protocol  Analysis 
 
The constraint solving  algorithms is the main idea that automated analysis  is based on.  It 

consists  of two  components, on a high  level.  Firstly,  a constraint-reduction strategy, which  

leads  to a possibly  infinite  search  tree.  Secondly,  a search  strategy that used  to search the 

tree for a solved  constraint system. 

Tamarin prover tool is used to implement the constraint solving algorithms based on 

constraint-reduction rules.  Tamarin provides automatic and interactive interface modes.   

Iterative deepening search  strategy is used  in the  automatic mode  to se- lect the next 

constraint-reduction rule to be applied (command line interface).   The Graphical User  

Interface  (GUI) is used  in the  interactive mode,  which  allows  the user to determine 

interactively both the search and the constraint-reduction strategy as shown in FIGURE 4.1. 
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FIGURE 4.1: Graphical user interface and Command line interface 
 
 

4.2    Constraint Solving Algorithms 
 

A constraint-reduction strategy is a partial function (r) from constraint systems Γ 

(where Γ  is a finite set of constraints, r is a partial function that  represents the 

constraint-reduction strategy) to finite sets of constraint systems that  meet  the fol- 

lowing  conditions: 

1. The constraint-reduction relation   {(Γ, r (Γ))|Γ ∈ dom(r)} is correct, 

complete, and well-formed. 

2. Every well-formed constraint system not in the domain of r has a non-empty 

set of solutions. 

Certainly, the function (r) minimizes constraint systems in its domain to fixed/finite 

sets of constraint systems that cover the same set of solutions, while any constraint 

systems out of its domain will be marked as solved  [63]. 
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4.3    The Tamarin Prover 
 

The Tamarin prover is one of the automatic verification tools, it supports equational 

theories, which takes into account  the cryptographic operators, alongside with their 

properties and  the  adversary’s ability  to deduce messages, in order  to modeling 

Diffie-Hellman, multisets [63] and bilinear  pairings. 

To avoid  undecidable automatic verification that  comes out from theoretical re- 

sults, we need to bind at least two out of the following three quantities: 
 

• Number of messages. 
 

• Number of sessions. 
 

• Number of nonces. 
 

Thus,  Tamarin prover could  also use automatic verification without bounding any 

of the above  three  quantities, which  known as a symbolic  backward implementa- 

tion with  complete proofs.  But in this case, the implementation process  may not be 

terminated because  of the infinite number of messages, sessions,  and nonces. 
 

 

4.3.1   Formalism 
 

This section  includes the  underlying formalism for Tamarin prover tool.   We use 

the equational theory to represent cryptographic messages using  Tamarin, then  we 

model protocol execution by formalizing the labeled multiset rewriting system.  Lastly, 

we specify the security properties by Tamarin [29]. 
 

 

4.3.1.1   Messages 
 

An  order-sorted term  algebra  used  by  Tamarin in  modeling cryptographic mes- 

sages.   Tamarin defines  two  sub-sort messages; fresh messages (nonces)  that  rep- 

resent  freshly  generated values,  and  pub messages that  represent publicly  known 

values.  A signature defines  the term  algebra,  which  specifies  the function symbols 

used  in the definition of terms: 

Definition 1 (Signature):  A signature Σ is a set of function symbols,  each hav- 
ing an arity n ≥  0.  The arity 0 function symbols  (n=0) are called constants, 

where  arity means  the number of variables in the function, for instance, 

fst(pair(x,y))=x has an arity of two variables x  and y, which means (n=2). 

Follows  an example of the  operators used  for modeling of symmetric encryp- 

tion/decryption: 

Example:  The signature   Σex   =  {senc,  sdec} defines  the binary  function sym- 

bols used  for modeling symmetric encryption and  decryption. Together with  a set 

of variables, we can now inductively define  the term  algebra,  the set of all possible 

terms  over a signature Σ. 

Definition 2 (Term Algebra):  Let X be a set of variables (disjoint  from Σ).  The 

term algebra  over    Σ, denoted as   TΣ (X ), is the least set such that: 
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• X ⊆ TΣ (X ) 

• t1, t2, ..., tn ∈   TΣ (X ) and f ∈ Σ  with   arity n ⇒ f (t1, t2 , ..., tn ) ∈ TΣ (X ) 

 
Cryptographic messages of Tamarin can be defined as follows (i.e., Σmsg  is concrete 

signature ): 

Definition 3 (Message):  A message is a term in TΣ msg(X ) where the signature is 

defined as Σmsg  = A ∪ F ∪ F unc ∪ {pair, f st, snd} [29]. 
 

• X : set of variables 

• A: set of agent names (∈ pub) 

• F: set of fresh values (∈ fresh) 
 

• Func: set of user-defined  functions (e.g., hashing) 

 
• pair(t1, t2): pairing; t1 , t2 , ..., tn are terms 

 
• fst: first element of a pair 

 
• snd: second element of a pair 

 

 

By default, the function symbols  for pairing can be found in the signature Σmsg. 

While any other functions used  by the protocol are elements of Func. 

Example:   Modeling symmetric encryption includes adding the  corresponding 

function symbols  to the set of user-defined functions: 

senc, sdec ∈ Func. With this definition, the terms t1   := sdec(senc(x,y),  y) 

and  t2  :=  x  are  messages in  TΣ msg(X ) (sdec and  senc represents symmetric 

decryption and symmetric encryption respectively). 

All algebra  in the above  definitions, are called free algebra,  which  means;  each 

term  is interpreted syntactically.  Briefly, t1  and  t2  are  syntactically different and 

would not be considered the same.  then  an equational theory is used  to clarify the 

semantic equivalence of messages. 

Definition 4 (Equational Theory): An equational theory is a set of equations, where 
an equation is a pair of terms, t, t’ ∈   TΣ (X ), written as t=t’. 

The equational theory defines an equivalence relation between the terms in TΣ (X ), 

the term algebra  then partitioned into equivalence classes. The resulting quotient al- 
gebra TΣ (X )|=E  interprets each term t by its equivalence class [t]E . 

Example:  The equational theory of pairing consists  of the following equations: 

 
• fst(pair(x,y)) =  x,   fst means,  we  need  to  take  the  first  value  of the 

pair(x,y) since  x is the first value and  y is the second  value. 

 
• snd(pair(x,y)) =  y 
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The equational theory defines  the meaning of the functions, while the term algebra 

defines  the message structure in terms  of function symbols. 

Example:  In the equational theory,  containing the equation sdec(senc(x,y),y) 

=  x, the messages t1 and   t2 would be in the same equivalence class, and consid- 

ered semantically equivalent. Much more of Tamarin’s  cryptographic messages can 

be found in Meier ’s PhD thesis [26]. 
 

 

4.3.1.2   Supported  Verification Problems 
 

Tamarin verifies and analyzes the validity claims of trace formulas for protocols that 

use  the  public  networks, which  have  active  and  passive  attackers.  Specifically,  a 

Dolev-Yao style adversary who has the ability to control these networks. This analysis 

is performed modulo an equational theory,  modeling the semantics of the employed 

cryptographic algorithms. 

The supported equational theories combined from: 
 

 

• An arbitrary subterm-convergent rewriting theory. 

 
• Modeling Diffie-Hellman exponentiation. 

 
• The equations modeling multiset union. 

 
• The equations modeling bilinear  pairing. 

 

 

In order  to simplify  the verification problems, Tamarin allows  restricting the set 

of considered traces  using  axioms  that  implements rules  with  inequality checks, 

such  as: Firstly,  add  InEq(t,s) to the rules,  which  needs  to have  two different terms 

t and   s.  Secondly,  filtering  the traces where   t and   s are instantiated to the same 

message, like   ∀   x  i.  I nEq(x, x)  @i    ⇒  ⊥. ( where  InEq(x,x) represents 

two 

different values  for each x; they are not equal.   ⊥ means  

false) 

The protocol, the considered equational theory, and the expected properties jointly 

as security protocol theory;  will  be specified  according to the  input given  to the 

Tamarin prover. Formally, a security protocol theory is a six-tuple 

T = (Σ, E, P, α, ϕ, X ) the description follows: 

 
• Σ: Specifies the functions for constructing cryptographic messages. 

 
• E (equational theory):  specifies the semantics of the functions in Σ. 

 
• P: specifies a set of protocol rules. 

 
• α (the axioms of T): Specifies sequences of closed trace formulas α. 

 
• ϕ (the validity claims of T): Specifies sequences of closed trace formula ϕ. 

 

• X (the  satisfiability claims  of T): Specifies  sequences of closed  trace  formula 

X [26]. 

mailto:@i
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As shown in the equations below,  the security protocol theory T is true  if its valid- 
ity and  satisfiability claims are achieved for the traces  of P   ∪  M DΣ  satisfying the 

axioms: 

P ∪ M DΣ  ∀E    (∧α∈ set(α~ ) α) ⇒     f or  each  ϕ ∈ set(ϕ~ ) 

In this equation: A set of protocol rules  (P) alongside with  message deduction rule 

M DΣ achieves  the validity claims ϕ of the security protocol theory (T). 

P ∪ M DΣ  ∃E    (∧α∈ set(α~ )α) ∧ X  f or  each  X ∈ set( ~ ) 

In this equation: A set of protocol roles (P) alongside with  message deduction rule 

M DΣ achieves  the satisfiability claims X of the security protocol theory (T). 
 

 

4.3.1.3   Execution and State 
 

Tamarin uses a labeled  multiset rewriting system  for protocol execution. Moreover, 

the state transitions are modeled by multiset rewriting rules.  The state of that tran- 

sition system  are multisets of facts. 

Definition 5 (Fact). All arguments of facts are terms in TΣ (X ). Facts are the elements 

of the multisets which represent the state of the transition system. 

Tamarin have three types of facts In, Out  and Fr, we use Out  facts to model  the 

adversary knowledge and messages on the network. In facts used  to model  a party 

receiving a message that controlled by Dolev-Yao from the untrusted network, and 

the fresh (Fr) facts used  to model  nonces,  which  are very  important facts to keep 

the security of information. 

Example:  The fact K(x) means that the adversary knows the term x. The fact Out(x) 

means that the term x was sent across the network by a protocol participant,  ready to be 

learned by the adversary. The fact In(x) indicates that x has been seen by the adversary 

and is ready to be received by an agent. 

Facts also describe  the protocol participant’s state.   The arguments of the state 

facts can be considered as the knowledge of the participant. A common notation is 

used  for the names  of state facts, as shown in the following example: 

Example:  The fact St_A_3(a, sk) denotes that agent a, executing the protocol in 

role A, is in it’s third internal state and knows the key sk. 

A statement can be seen as one fact. Depicting just a small part of the state, while 

multiset specifies the whole state of such facts. 
 

 

Linear versus persistent  facts: 
 

linear facts appear in just one state,  and  not  the other.   They could  consumed by 

rules as well as they are produced by rules. 

Persistent facts denoted by the prefix (!) and it never removed from the state.  Def- 

inition 6 (Multiset  and State).  A multiset is a set where elements may occur more than 

once (Elements have a multiplicity). The denoted operations on multisets with a # sign next 

to the usual set operator. A state is a multiset of facts, meaning that the same fact may occur 

multiple times in a state. 
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Four types  of facts consist of the state of a protocol execution: 
 

• State facts name  (St_A_4(a,  sk)) 
 

• Adversary knowledge facts ( K(sk)); which  means  the adversary knows  the 

session key (sk). 
 

• Messages on the network facts ( Out(sk)); which  means  sending the (sk) to 

an unsecured network. 
 

• Fresh facts (Fr(na)); fresh nonces. 
 

Example:  A state fact describing two agents executing a protocol, each in the first 

state of the corresponding role, defined as follows: 

Si = [St_A_1(a,sk,b), St_B_1(b,sk,a), K(sk), Fr(na),  K(n)] 

Each agent knows the name and the shared key sk of the other agent.  There is also 

a fresh fact in the state, and  the adversary knows  sk as well as the value  of a unique 

nonce  n, which  is the same as na but it is not fresh anymore when  it is revealed by 

the adversary. 

Each step in the protocol execution corresponds to a change  of the state,  which 

called state  transition that  represented by a multiset rewriting rule,  which  consists 

of a left-hand side (l), namely premise, and a right-hand side (r), namely conclusion, 

and a label (a) as well. 

Definition 7 (Labeled Multiset  Rewriting).  A labeled  multiset rewriting rule is 

a triple (l), (a), (r), each of which is a multiset of facts. We write such a rule using either the 

short, in-line notation l −  [a] → r, or in the form of a deduction 

rule: 

 
 l1           l2           ...      lk   

a 
r1        r2        ...       rm 

 
where l1 , l2 , ..., lk are the facts of the premise, and r1 , r2, ..., rm are the facts of the conclu- 

sion, and (a) is the action fact [29]. We can also rewrite the above equation in a form: 

l1 , l2 , ..., lk   −  [a] → r1, r2, ..., rm . 
 

 

4.3.2   Protocols Modeling 
 

The execution of security protocols could  be defined in many  ways,  according to 

the used  tool.  Using  Tamarin, the user  has no limitations of modeling the security 

protocols in the way he/she choose, since there is no pre-defined protocol concept. 

In this section, we present some of the previous Tamarin models of TLS security 

protocol. We have examined and verified  these models, which helps us in updating 

and  building our own  models accordingly, to achieve  our goal of proving PFS and 

preventing replay  attacks. 

To start our protocol Modeling we need to consider the following: 
 

• Our  models includes three  main  factors;  the client,  server  and  the adversary 

that  is able to modify,  inject and  delete  the  messages on the  network repre- 

sented by Dolev-Yao adversary. 
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• We write  our  security properties models using  Tamarin tool with  a standard 

format,  which  needs  to choose  a name  for the theory in the first line for ev- 

ery security properties file in Tamarin, preceded by the keyword theory (e.g. 

theory TLSsecurity  ) after that we use begin keyword to indicate the start  of 

Tamarin security code, then  we translate the security properties by construct- 

ing rules for initializing the client, the server  and  the handshake process  in- 

cluding  client hello,   server hello and   Finished messages ...etc. 

Then we close our Tamrin  file using  end keyword as shown in FIGURE 4.2. 

 

• We declare  the  cryptographic primitives used  by the  protocol, the  multiset 

rewriting rules  that models the protocol, then,  writing the security properties 

lemmas to be proven or refuted/disproven. 

 

• Finally, we execute the security properties theory using Tamarin tool to get our 

results. 

 

 
 

FIGURE 4.2: Part of PSK resumption Handshake 
 
 

A set of traces is defined in Tamarin using first-order logic formulas over time-points 

and action facts. The syntax  for specifying security properties is defined as follows: 
 

• All for universal quantification, temporal variables are prefixed  with # 
 

• Ex for existential quantification, temporal variables are prefixed  with # 
 

• ==> for implication, & for conjunction 
 

• | for disjunction 
 

• not for negation 
 

• f @ i for action  constraints, the sort prefix  for the temporal variable ‘i’ is op- 

tional 

 

• i < j for temporal ordering, the sort prefix for the temporal variables ‘i’ and ‘j’ 

is optional (i and j for temporal variables - could be any variable) 
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• #i = #j for an equality between temporal variables ‘i’ and ‘j’ 

 
• x = y for an equality between message variables ‘x’ and ‘y’ (x and y for message 

variables - could be any variable) 
 

 

Example of Protocol Modeling - NAXOS 
 

NAXOS models the DHE handshake protocol that shown in FIGURE 4.3 

 

 
 

FIGURE 4.3: Diffie-Hellman handshake protocol 

 

Starting  of modeling a Public Key Infrastructure (PKI), no pre-defined notation 

in Tamarin for the PKI. Accordingly, we can model  a pre-distributed PKI with  an 

asymmetric key for each party  using  a single rule to generate a key for a party.  The 

identity, the private and public keys are stored  in the state as facts, allowing protocol 

rules to restore  them.  (Pk fact denotes public key,  Ltk fact denotes long-term private 

key,  ~x: denotes a  fresh value of variable x,  $A: denotes the identity of an agent A). 

The rule  Generate_key_pair:  To generate client’s  public  and  private keys,  the 

client generates his key-share, then sends it to the server as FIGURE 4.3 show in step 

(1). 
 

rule  Generate_key_pair: 

[ Fr(~x) ] 

⇒ 
[ !Pk($A,pk(~x)) 

, Out(pk(~x)) 

, !Ltk($A,~x) 

] 
 

 

Some  protocols depend on algebraic  properties of the  key  pairs.   In many  DHE- 

based  protocols; gx:  is a public  key,  x:  is a private key,  it enables  exploiting the 

commutativity of the  exponents to establish the  keys,  as shown in the  following 

rule: 
 

rule Generate_DH_key_pair: 

[ Fr(~x) ] 

⇒     [ !Pk($A,’g’^~x) , Out(’g’^~x) , !Ltk($A,~x) ] 
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4.3.3   Modeling of Protocol steps 
 

The protocol steps that user/agent able to perform are, receives a message, responds 

by sending a message, or starting a session. 

Modeling the  responder role is simpler than  the  initiator role and  can be done  in 

one rule.  It uses a DHE exponentiation and two hash  functions (h1 , h2  that must  be 

declared by the user), the model  for the Naxos responder role looks like: 
 

rule  NaxosR_attempt1: 

[ In(X), 

Fr(~eskR), 

!Ltk($R, lkR) 

] 

⇒ 
[ 

Out( ’g’^h1(<  ~eskR, lkR >)  ) 

] 
 

 

~eskR:  fresh value, $R: Responder , kR: a session Key,  lkR:Long-term private key. 

The responder also computes a session key kR into the action state: 
 

rule  NaxosR_attempt2: 

[ In(X), 

Fr(~eskR), 

!Ltk($R, lkR) 

] 

-[ SessionKey($R, kR  ) ]-> 

[ Out( ’g’^h1(< ~eskR, lkR >) ) ] 
 

 

To specify the communication of kR without decreasing the reliability and  to avoid 

duplication and mismatches; we use binding to have the following: 
 

rule  NaxosR_attempt3: 

let 

exR   =  h1(< ~eskR, lkR >) 

hkr =  ’g’^exR 

kR  =  h2(<  pkI^exR,  X^lkR, X^exR, $I, $R  >) 

in 

[ In(X), 

Fr(  ~eskR ), 

Fr( ~tid ), 

!Ltk($R, lkR), 

!Pk($I, pkI) ] 

-[ SessionKey( ~tid,  $R, $I, kR  ) ]-> 

[ Out( hkr ) ] 
 

 

~tid:  Thread identifier, $pkI: The public  key  of the  communication partner,   I: 

Communication partner. 



4.3.  The Tamarin Prover 33  

 
 

The model  for Naxos initiator role sends  a message and  wait  for the response. 

While  waiting, other  agents  might  also perform steps.   Accordingly, modeling the 

initiator using  two rules. 

First rule; sending a message: 
 

rule  NaxosI_1_attempt1: 

let 

exI =  h1(<~eskI, ~lkI  >) 

hkI =  ’g’^exI 

in 

[ Fr( ~eskI ), 

!Ltk( $I, ~lkI ) 

] 

–> 

[ Out( hkI ) ] 
 

 

While  the initiator is waiting for the response; we need  to consider receiving this 

message by the responder, which can be represented by storing  the initiator ’s thread 

(sending a message at the first rule  ) in the state  face transition. This allows  us to 

return back and  complete the steps where  we have left off. The optimization of the 

sending a message rule including the state fact thread must  be as follows: 
 

rule  NaxosI_1: 

let 

exI =  h1(<~eskI, ~lkI  >) 

hkI =  ’g’^exI 

in 

[ Fr( ~eskI ), 

!Ltk( $I, ~lkI ) 

] 

–> 

[ Init_1( ~tid,  $I,  $R, ~lkI, ~eskI ), 

Out( hkI )] 
 
 
 

The second  initiator rule: 
 

rule  NaxosI_2: 

let 

exI =  h1(<~eskI, ~lkI  >) 

kI =  h2(< Y^  lkI, pkR^exI, Y^exI, $I,  $R  >) 

in 

[ Init_1( ~tid,  $I,  $R,~lkI ,  eskI), 

!Pk(  $R, pkR  ), 

In( Y  ) ] 

-[ SessionKey( ~tid,  $I, $R, kI ) ]-> 

[   ] 
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Y: a message to be received from the network. 

The output is not needed in this case, since there are no further steps in the protocol. 

The same agent identities and the exponent for an initiator exI computed in the first 

step will be used  in this step.  At last, the complete example;  including initiator and 

responder will look like [62]: 
 

theory Naxos 

begin 

builtins:  diffie-hellman 

functions:    h1/1 

functions:    h2/1 

rule  Generate_DH_key_pair: 

[ Fr(~x) ] 

⇒ 
[!Pk($A,’g’^~x) 

, Out(’g’^~x) 

, !Ltk($A,~x) 

] 

rule  NaxosR: 

let 

exR   =  h1(< ~eskR, ~lkR >) 

hkr =  ’g’^exR 

kR  =  h2(<  pkI^exR,  X^~lkR, X^exR, $I, $R  >) 

in 

[ In(X), 

Fr(  ~eskR ), 

Fr( ~tid ), 

!Ltk($R, ~lkR), 

!Pk($I, pkI) ] 

-[ SessionKey( ~tid,  $R, $I, kR  ) ]-> 

[Out( hkr )] 

 

rule  NaxosI_1: 

let 

exI =  h1(<~eskI, ~lkI  >) 

hkI =  ’g’^exI 

in 

[    Fr( ~eskI ), 

Fr( ~tid ), 

!Ltk( $I, ~lkI ) ] 

–> 

[    Init_1( ~tid,  $I,  $R, ~lkI, ~eskI ), Out( hkI ) ] 

rule  NaxosI_2: 

let 

continue ... 
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...continue 

exI =  h1(<~eskI, ~lkI  >) 

kI =  h2(< Y^~lkI, pkR^exI, Y^exI, $I,  $R  >) 

in 

[Init_1(  ~tid,  $I,  $R,~lkI , ~eskI), 

!Pk(  $R, pkR  ), In( Y  ) ] 

-[ SessionKey( ~tid,  $I, $R, kI ) ]-> 

[   ] 

end. 
 
 

4.3.4   Property Specification 
 

This section presents how to specify trace and observational equivalence properties 

of the protocol, depending on action facts in the model. 
 

 

4.3.4.1   Trace Properties 
 

The system  state of Tamarin is a multiset of facts with an empty  multiset as an initial 

system  state.  The rules define how the system  can make a transition to a new state. 

The protocol’s  behavior is explained by the action facts. 

Each rule contains three parts,  left and right-hand sides, and the action facts. We 

replace  the left-hand side by the right-hand side when  it is already contained in the 

current state, in this case; the rule can be applied to a state fact. Appending the ac- 

tion facts to the trace in order  to record  the application of the rule in the trace.  The 

explanation is in the following example. 
 

 
rule fictitious: 

[ Pre(x), Fr(~n) ] 

-[  Act1(~n), Act2(x) ]-> 

[ Out(<x,~n>) ] 
 

 

The rule consumes the facts Pre(x) and Fr(~n) and produces the fact Out(<x,~n>). 

It is labeled  with  the actions  Act1(~n) and  Act2(x).  We can apply  the rule if we 

found two  arguments matching the  x and  ~n  variables in the  Pre and  Fr facts. 

When applying this rule, x and ~n are instantiated with the matched values  and the 

state  transition is labeled  with  the instantiations of Act1(~n) and  Act2(x).  The 

time of occurring for these two instantiations is at the same time-point. 

We can use  action  fact symbols  in formulas.  There  are  limited terms  of these 

facts and  allowed to be built  only from quantified variables, free function symbols 

and public constants. Excluding equation’s function symbols.  The most importantly, 

is to guard all variables or the Tamarin tool will produce an error. 

Guardedness:   Check  of occurring the universally quantified variables directly 

after a quantifier in an active constraint, the same goes with existentially quantified 

variables.  For outermost logical  operator inside  the  quantifier are  an implication 

universally quantified variables and  conjunction with  the  existentially quantified 
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variable. Using  parentheses is recommended, especially with  a precedence of log- 

ical connectives, but  keeping the standard precedence. The highest priority is for 

negation, then conjunction, then disjunction and then implication. 

To verify  a specific  property for the  protocol, we use  Lemma  followed by the 

property name  and  a guarded first-order formula.  This means  that  the  property 

must  hold for all traces of the protocol. For example, the freshness of the value (~n) 

is distinct in all applications of the rule,  or we identify the same  instance  by time- 

point  for the same fresh value that appears twice, we write: 
 

lemma   distinct_nonces: 

"All n  #i #j.   Act1(n)@i &   Act1(n)@j ==>  #i=#j" 

or equivalently 

lemma   distinct_nonces: 

all-traces 

”  All n  #i #j.   Act1(n)@i &   Act1(n)@j ==>  #i=#j" 

 
To express  that there exists a trace for which the property hold, we add  (exists-trace 

word) after the name  and before the property. For example, the following lemma  is 

true if and only if the preceding lemma  is false [62]: 
 

lemma   distinct_nonces: 

exists-trace 

"not All n  #i #j.   Act1(n)@i &   Act1(n)@j ==>  #i=#j". 
 

 
 
 
 

4.3.5   Security Properties 
 

In this section,  we are including some security properties from Tamarin manual to 

focus on and to adapt them according to our model.  Secrecy and authentication are 

our interesting properties. 
 

 

4.3.5.1   Secrecy 
 

Secrecy is the term property that unknown to the adversary. For instance, secrecy of 

a term  t is satisfied  for agent  A, if the term  t is not compromised by the adversary 

or its communicated party,  or it’s even unknown to the adversary. The conventional 

secrecy claim is an action fact includes the agent  name  and  the term that is claimed 

to be secret. Using this structure, any role can prove secrecy of any claimed term.  We 

use lemmas to prove  secrecy claims made  by a role as shown in the below example: 
 

lemma   example_role_secrecy: "All T  tag  x  

#i. Example_Role_Claim_Secret(T, tag, x)  

@i 

==>  (not (Ex #j.   K(x)  @j) 

|(Ex  A#j.   Rev(A) @j  &   Honest(A) @i))" 

mailto:@i
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4.3.5.2   Perfect Forward Secrecy PFS 
 

Perfect  Forward Secrecy (PFS) is a strong  security property that  keeps  the  estab- 

lished  session  keys between parties secure  even if the long-term secret keys are ex- 

posed [31].  This prevents the eavesdropper from  revealing the secret  data  of past 

communications [64]. 

To differentiate between secrecy  and  perfect  forward secrecy  we need  to consider 

the following two examples: 
 

lemma   secrecy: 

"All  x  #i. 

Secret(x) @i  ==> 

not (Ex #j.    K(x)@j) 

| (Ex B  #r.  Reveal(B)@r &   Honest(B)  @i)" 

 
This lemma  indicates that the agents  are supposed to be honest  whenever the mes- 

sage  x is kept secret and not been compromised. We also can read it as follows: The 

lemma  states  that  whenever a secret action   Secret(x) occurs  at timepoint i, the 

adversary does  not know   x or an agent  claimed  to be honest  at time point   i has 

been compromised at a timepoint r. 

At a timepoint i the occurring of a secret action  Secret(x) prevents the adver- 

sary of knowing  x, or the compromisation is done  at time point  r where  it should 

be honest  at time point  i according to agent’s claim. 

A PFS is a stronger secrecy property, which  requires that a Secret action  labeled 

messages remain secret before compromisation. 
 

lemma   secrecy_PFS: 

"All x  #i. 

Secret(x) @i  ==> 

not (Ex #j.    K(x)@j) 

| (Ex B  #r.  Reveal(B)@r &   Honest(B) @i  &   r <  i)" 

 
The following example (one message protocol) distinguish between secrecy and 

PFS. To send  an encrypted message between two  agents  A and  B. An agent  A en- 

crypts  and sends  a message to an agent  B; using  agent  B public  key. The secrecy are 

claimed  by both  agents  but  only  agent  A claims  the secrecy  of the message.  Two 

action facts roles are applied Role (’A’) and Role (’B’) for A and B agent’s roles. 

The PFS claim is not applied to agent  A. This can be reflected  by negating the 

PFS property using  an exists-trace lemma  [62]. 
 

theory secrecy_template 

begin 

builtins:   asymmetric-encryption 

/*  Protocol formalization for: 

1.   A  -> B: A,napk(B) 

*/ 

continue ... 

mailto:@i
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continue ... 

// Public  key infrastructure 

rule Register_pk: 

[ Fr(~ltkA) ] 

–> 

[ ... ... !Ltk($A, ~ltkA) 

, !Pk($A, pk(~ltkA)) 

, Out(pk(~ltkA)) 

] rule Reveal_ltk: 

[ !Ltk(A, ltkA) ] – [ Reveal(A) ]-> [ 

Out(ltkA) ] 

 
// Initialize Role A 

rule Init_A: 

[ Fr(~id) 

, !Ltk(A, ltkA) 

, !Pk(B,  pkB) 

] 

–[ Create(A, ~id),  Role(’A’) ]-> 

[ St_A_1(A, ~id,  ltkA,  pkB, B) 

] 

 
// Initialize Role B 

rule Init_B: 

[ Fr(~id) 

, !Ltk(B, ltkB) 

, !Pk(A,  pkA) 

] 

–[ Create(B, ~id),  Role(’B’) ]-> 

[ St_B_1(B, ~id,  ltkB,  pkA,  A) 

] 

 
// Role A  sends first message 

rule  A_1_send: 

[ St_A_1(A, ~id,  ltkA,  pkB, B) 

, Fr(~na) 

] 

–[ 

Send(A,  aenc{A,  ~na}pkB) 

, Secret(~na),  Honest(A), Honest(B), Role(’A’) 

]-> 

[ St_A_2(A, ~id,  ltkA,  pkB, B, ~na) 

, Out(aenc{A, ~na}pkB) ] 

continue ... 
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...continue 

// Role B  receives first message 

rule  B_1_receive: 

[ 

St_B_1(B, ~id,  ltkB,  pkA,  A) 

, In(aenc{A,  na}pkB) 

] 

–[ Recv(B,  aencA,  napkB) 

, Secret(na), Honest(B), Honest(A), Role(’B’) 

]-> 

[ St_B_2(B, ~id,  ltkB,  pkA, A,   na) 

] 

lemma   executable: 

exists-trace 

"Ex   A  B  m   #i #j.   Send(A,m)@i  &   Recv(B,m)  @j" 

lemma   secret_A: 

"All n  #i.   Secret(n) @i  &   Role(’A’) @i  ==> 

(not (Ex #j.   K(n)@j)) | (Ex X  #j.  Reveal(X)@j &    Honest(X) 

@i)" 

lemma   secret_B: 

"All n  #i.   Secret(n) @i  &   Role(’B’) @i  ==> 

(not (Ex #j.   K(n)@j)) | (Ex X  #j.  Reveal(X)@j & Honest(X) 

@i)" 

 
lemma   secrecy_PFS_A: 

exists-trace 

"not All x  #i. 

Secret(x) @i  &   Role(’A’) @i  ==> 

not (Ex #j.    K(x)@j) 

| (Ex B  #r.  Reveal(B)@r &   Honest(B) @i  &   r <  i)" 

 
end 
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4.3.6   Authentication Properties 
 

In this  section,  we  will  define  a hierarchy of increasingly stronger authentication 

properties. which means,  the non-injective agreement implies both weak agreement 

and aliveness. In general, two types of claim events are used to analyze most authen- 

tication  properties as follows: The protocol ends with the producing the Commit ac- 

tion fact by the role A, "Commit  (a,  b, <’A’, ’B’,t>)".  The other  role; B in 

his turn  produce the corresponding action  fact "Running(b, a,  <  ’A’, ’B’, 

t>)".  A and  B are roles for the agent  names  a and  b respectively, with  known term 

t.  The relationship between these  two  facts will  need  different requirements that 

imposed between each of the following properties, except aliveness [29]. 
 

 

4.3.6.1   Aliveness 
 

The aliveness of an agent  b is guaranteed by the protocol;  to an agent  a in role A, if 

the agent  a completes a run  of the protocol, apparently with  b in role B, then  b has 

previously been running the protocol, as shown in the lemma. 
 

lemma   aliveness: 

"All a b  t #i. 

Commit(a,b,t) @i 

==>  (Ex id #j.   Create(b,id) @   j) 

| (Ex C  #r.    Reveal(C) @   r &   Honest(C) @   i)" 
 
 
 

 
4.3.6.2   Weak agreement 

 
The weak  agreement of an agent  b is guaranteed by the protocol with  an agent  a if, 

whenever the agent  a completes a run  of the protocol, apparently with  b in role B, 

then b has previously been running the protocol, apparently, with a, as shown in the 

lemma. 

lemma   weak_agreement: 

"All a b  t1 #i. 

Commit(a,b,t1) @i 

==>  (Ex t2 #j.   Running(b,a,t2)  @j) 

| (Ex C  #r.    Reveal(C) @   r &   Honest(C) @   i)" 
 

 
 
 
 

4.3.6.3   Non-injective agreement 
 

The non-injective agreement of an agent  b in role B on a message t is guaranteed by 

the protocol with an agent a if, whenever the agent a completes a run of the protocol, 

apparently with b in role B, then b has previously been running the protocol, appar- 

ently with a, and b was acting in role B in his run, and the two principals agreed on 

the message t, as shown in the lemma. 
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lemma   noninjective_agreement: 

"All a b  t #i. 

Commit(a,b,t) @i 

==>  (Ex #j.   Running(b,a,t)  @j) 

| (Ex C  #r.    Reveal(C) @   r &   Honest(C) @   i)" 
 

 
 
 

4.3.6.4   Injective agreement 
 

The injective agreement of an agent  b in role B on a message t is guaranteed by the 

protocol with  an agent  a if, whenever the agent  a completes a run  of the protocol, 

apparently with b in role B, then b has previously been running the protocol, appar- 

ently with a, and b was acting in role B in his run, and the two principals agreed on 

the message t. Moreover, each run of agent  a in role A corresponds to a unique run 

of agent b, for example, each agent Commit corresponds to a unique Running by the 

partner agent. 

Keeping  in mind  that  preventing replay  attacks  achieved using  injective  agree- 

ment.  So, we need to involve  a fresh value in each run via term t that must  keep the 

freshness of such value [62]. 
 

lemma   injectiveagreement: 

"All A  B  t #i. 

Commit(A,B,t) @i 

==>  (Ex #j.   Running(B,A,t) @j 

&   j <  i 

&   not  (Ex A2  B2  #i2.   Commit(A2,B2,t)  @i2 

&   not (#i2 =  #i))) 

| (Ex C  #r.    Reveal(C) @r  &   Honest(C) @i)". 
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Chapter 5 
 
 
 

Modeling and Analyzing of TLS 
 

1.3 Handshake Modes 
 
 
 
 

In this  section,  we  will  briefly  show  the  model  for the  three  basic  key  exchange modes  

that are supported in TLS 1.3 by showing the models we depends on in [29] then showing 

our updates on that model: 

 

• (EC)DHE (Diffie-Hellman over either  finite fields or elliptic curves) 

 
• PSK only 

 
• PSK with (EC)DHE 

 
The FIGURE 5.1 show  the full TLS1.3 handshake protocol. 

 

 
 

FIGURE 5.1: TLS1.3 Full handshake protocol [65] 
 

 

The ClientHello message contains a random nonce,  it also offers the protocol ver- sion,  

and  a list of symmetric hash  pairs;  key shares  that  provided by (EC)DHE or pre-shred 

key that  provided by PSK or a combination of both  PSK with  (EC)DHE, 
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ClientHello also includes some other  extensions and fields for middlebox compati- 

bility. 

The ServerHello message determines the negotiated cryptographic parameters, 

and the shared keys with the client, which is a key share extension in Diffie-Hellman 

(EC)DHE) or pre-shared key extension in a PSK or using  both  together (EC)DHE 

and PSK. This thesis will relay on the above handshake basics to start our modeling 

process  in the following sections  [66] 
 

 

5.0.1   DHE Mode Modeling and Analysis 
 

Foremost, we  use  a pure  DHE  handshake when  no  pre-shared key  available be- 

tween  the communicating parties. Moreover, DHE establishes a resumption secret 

to be used  by subsequent handshakes to derive  a pre-shared key.  The server-side 

authentication is required in this mode. 

DHE authenticate peers  using  the public  key cryptography alongside with  cer- 

tificates.  However, the certificate  side of the client is optional and  needs  the certifi- 

cate request from the server. 

It is good  to mention that,  we can derive  around four more  modes  for the DHE 

itself according to HelloRetry  request and  the  Certificate request (i.e.  DHE  with 

client/server authentication or without client/server authentication). 
 

 

5.0.1.1   DHE Mode Modeling 
 

We introduce a general  modeling of the  main  roles  (client  and  server)  during the 

handshake process  in order  to exchange messages between the  send  rule  and  its 

corresponding receive rule. 

The initialization for both roles; client and server  is the state fact that we have to 

begin with,  to show  participating the agent  in the protocol. The modeling of client 

and server  initialization using  Tamarin tool as shown below: 
 

Server Initialization: 

rule server_Initialize: 

[!Ltk(S, ltkS)] 

-[ Create(S) ]-> 

[St_Dh_S_1(S, ltkS)]. 

 
Client Initialization: 

rule Client_Initialize: 

[!Ltk(C, ltkC)] 

-[ Create(C) ]-> 

[St_Dh_C_1(C, ltkC)] 
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5.0.1.2   Key Exchange 
 

This phase  will include the main  messages of key exchange protocol, ClientHello, 

ServerHello, and  HelloRetryRequest.  These messages includes a fresh nonce,  the 

Diffie-Hellman key share part.  ClientHello: The model  of sending clientHello rule: 
 

rule dh_client_send_ch: 

let 

Msg  =  <  ~NC,   ’dhe’,  ’g’^~ec > 

in 

[St_Dh_C_1(C, ltkC),  Fr(~Nc), Fr(~ec)] 

-[   InEq(C, $S)  ]-> 

[St_Dh_C_2(C, $S,  ltkC, ~ec, CH(Msg)), Out(Msg)] 
 

 

When the server  receives the ClientHello, the modeling will be the same for the 

server,  but with  the following server  state  fact: [St_Dh_S_2(S,  $C, ltkS,  Y, 

CH(Msg))].  (Note,  Y  =  ’g’^ec ). 

Hello Retry Request As mentioned before; that HelloRetryRequest is an option 

that  can be used  in need.  This increases the possibility of rules;  to be two rules  for 

each role (client) that is applicable to the other role (server).  The server role will only 

model  the server  role; this could be applicable to the client role as well: 
 

rule dh_server_send_hrr: 

let 

Msg  =  ’hrr’ 

in 

[St_Dh_S_2(S, C, ltkS, Y,   CH(m))] 

-> 

[St_Dh_S_2a(S, C, ltkS, <CH(m),  HRR(Msg)>), Out(Msg)] 
 

 

The above  rule  shows  that  we have  two  different state  fact, one of them  is ap- 

plicable  for  the  server  that  has  ClientHello in  the  transcript.   This  means,   only 

one  HelloRetryRequest is allowed.  The state  fact [St_Dh_S_2a(S, C, ltkS, 

TSH)  show  that  receiving the  second  ClientHello event;  produces the  state  fact 

[St_Dh_S_2a(S, C, ltkS, Y,   TSH), where  TSH =  <CH(m1),  HRR(m2), 

CH(m3)>, TSH is included in generating every key, it represents the handshake pro- 

cess till the ServerHello, CH represents ClientHello, HRR represents 

HelloRetryRequest, m1,   m2,   m3 are messages. 

ServerHello:  The model  of sending the ServerHello rule to the client: 
 

rule  dh_server_send_sh: 

let 

Msg  =  <  ~Ns, ’dhe’,  ’g’^~es >  MS  =  Y^~es 

in 

[St_Dh_S_2(S, C, ltkS, Y,   TSH), Fr(~Ns), Fr(~es)] 

-> 

[St_Dh_S_3(S, C, ltkS, MS,  <TSH,   SH(Msg)>), Out(Msg)] 
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The (TSH) in the state  fact (St_Dh_S_2) might  contain  one ClientHello mes- 

sage, or it might  contain  three  messages in case the server  sends  the HelloRetryRe- 

quest message. In this case; the state  fact (St_Dh_S_3) includes MS term,  which 

represented by the Diffie-Hellman key, all keys are derived from MS, since no pre- 

shared keys are used  in this mode  to finally  sending or receiving the ServerHello 

rule. 
 

 

5.0.1.3   Server Parameters 
 

To determine the reset  of the handshake process  after  ServerHello;  we need  mes- 

sages that contains information from the server, which are EncryptedExtentions and 

CertificateRequest that are encrypted using  encryption key enckey. 

Encrypted Extensions.  The EncryptedExtensions (EE) message is the first mes- 

sage that encrypted using  enckey. So, it MUST be sent directly after the ServerHello 

message. 

The EE could  include extensions that  are not associated with  individual certifi- 

cates  even  if they  are protected.  Therefore, the client  MUST abort  the handshake 

with an alert, after looking  for any forbidden extensions in (RFC8446). 

Certificate Request  requires the  client  to authenticate its identity if the  server 

already requested it. So, we need  to consider both, existence  and absence  of the op- 

tional CertificateRequest in our modeling, as shown: 
 

rule dh_client_receive_cr: 

let 

encKey  =  HKDF(«  MS,  ’enc’>, h(TSH) >)   Msg  =  ’cr’ 

in 

[St_Dh_C_4(C, S, ltkC, MS,  TSH,   TST),  In(sencMsgencKey)] 

-> 

[St_Dh_C_5(C, S, ltkC, MS,  TSH,   <TST,CR(Msg)>, ’cauth’)] 

rule dh_server_skip_cr: 

[St_Dh_S_4(S, C, ltkS, MS,  TSH,   TST)] 

-> 

[St_Dh_S_5(S, C, ltkS, MS,  TSH,   TST,  ’no_cauth’)] 
 

 

Where   MS is the source  of key derivation, besides  the handshake hash  stages,  TST 

includes all subsequent messages that  derives the traffic key trKey.  According to 

the applied rule; the resulting state fact either  is tagged with the term ’cauth’ or 

’no_cauth’ to determines whether the server authenticate itself at first; in order  to 

decide  whether to send  an authentication message to the client or not while model- 

ing. 

Authentication Messages. As we have two roles; client and server,  thus we also 

need  to have two messages blocks, server/client blocks.  In case of using  the Diffie- 

Hellman, the server  will always need  to send  the full authentication block whereas 

no pre-shared key is ready  yet to alternatively authenticate the server. 
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Server Authentication Block.  The rule for receiving the certificate  of the server 

for the client rule is represented as follows, taking into account the adopted assump- 

tion in this model is a perfect public key infrastructure, which means; the certificates 

are represented as pairs of (name and public key). 
 

rule dh_client_receive_cts: 

let 

encKey  =  HKDF(«  MS,  ’enc’>, h(TSH)  >), Msg  =  <  S,  pkltkS  > 

in 

[St_Dh_C_5(C, S, ltkC, MS,  TSH,   TST,  cr), 

In(sencMsgencKey), !Pk(S, pkltkS)] 

-> 

[St_Dh_C_6(C, S, ltkC, pkltkS, MS,  TSH,  <TST,CTS(Msg)>,  cr)] 
 

 

This rule contains the public key infrastructure, which modeled by the fact !Pk(S, 

pkltkS). In this case; the server sends CertificateVerify after sending it’s certificate, 

as shown: 
 

rule  dh_server_send_cvs: 

let 

encKey  =  HKDF(«  MS,  ’enc’>, h(TSH)  >) 

Msg  =  sign(h(<TSH,TST>), ltkS) 

in 

[St_Dh_S_6(S, C, ltkS, MS,  TSH,   TST,  cr)] 

-> 

[St_Dh_S_7(S, C, MS,  TSH,<TST,  CVS(Msg)>,  cr), 

Out(sencMsgencKey)] 
 

 

Finally, the Server Finished  message, which is the last message of the Server authen- 

tication  block is modeled almost  the  same.   The message Msg  =  HMAC(h(<TSH, 

TST>),  mackey) has  been  encrypted by the  server  and  sent  out.   The  hash  in 

this message "Msg   =  HMAC(h(<TSH,  TST>),  mackey)" is differ from the hash 

of the  Server  Certificate  "Msg   =  sign(h(<TSH,TST>),ltkS)".   Moreover, the 

TST term  contains the whole  signature. The state  fact that  represent the agent  will 

be St_Dh_S_8(S, C, MS,  TSH,   TST, cr) and St_Dh_C_8(C,  S, ltkC, 

MS,  TSH,   TST,  cr).   In this  case the  trKey becomes  known, which  means  that 

the TST term is complete. Also, the TSR term that used  to compute the resumption 

secrete will be constituted by the remaining messages. 

Client Authentication Block. The client Certificate and client 

CertificateVerify messages will be skipped if the client didn’t  receive the 

CertificateRequest. The rules for both roles are applied with no client authen- 

tication  (no_cauth) term. 
 

rule dh_client_skip_cauth: 

[St_Dh_C_8(C, S, ltkC, MS,  TSH,   TST,  ’no_cauth’)] 

-> 

[St_Dh_C_10(C, S,  MS,  TSH,   TST,  ’no_cauth’)] 
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In the case of sending the CertificateRequest, then we apply  both rules 

dh_client_send_ctc  and dh_server_receive_ctc using the client authen- 

tication  term, as shown below. 
 

rule dh_client_send_ctc: 

let encKey  =  HKDF(«  MS,  ’enc’>, h(TSH)  >) 

Msg  =  <  C, pk(ltkC)  >  in 

[St_Dh_C_8(C, S, ltkC, MS,  TSH,   TST,  ’cauth’)] 

-> 

[St_Dh_C_9(C,S,ltkC,MS,TSH,TST,CTC(Msg)), 

Out(sencMsgencKey)] 

 
rule dh_server_receive_ctc: 

let encKey  =  HKDF(«  MS,  ’enc’>, h(TSH)  >) 

Msg  =  <  C, pkltkC >  in 

[St_Dh_S_8(S, C, MS,  TSH,   TST,  ’cauth’), 

In(sencMsgencKey), !Pk(C, pkltkC)] 

-> 

[St_Dh_S_9(S, C, pkltkC,  MS,  TSH,   TST,  CTC(Msg))] 
 

 

Finally, the client Finished message received by the server are modeled as shown 

below. 
 

rule dh_server_receive_fic: 

let 

macKey   =  HKDF(«  MS,  ’mac’>,  h(TSH) >) 

encKey  =  HKDF(«  MS,  ’enc’>, h(TSH)  >) 

Msg  =  HMAC(h(«TSH,TST>,TSR>), macKey) 

trKey =  HKDF(«  MS,  ’tr’>, h(<TSH,TST>)  >) 

in 

[St_Dh_S_10(S, C, MS,  TSH,   TST,  TSR), 

In(sencMsgencKey)] 

-[ Dh_Server_Ts(TSH, <TSR,FIC(Msg)>), 

Dh_Server_Claim_Secret(S, ’encKey’,  encKey), 

Dh_Server_Claim_Secret(S,  ’macKey’, macKey), 

Dh_Server_Claim_Secret(S, ’trKey’, trKey), 

Commit(S,C, <’S’,’C’,’DH’, 

<  macKey, encKey,  trKey  >  >), 

Honest(S), 

Honest(C) 

]-> 

[St_Dh_S_11(S, C, MS,  TSH,   TST, <TSR,FIC(Msg)>)] 
 

 

New  Session Ticket.  The last message sent during the post handshake phase  is 

the NewSessionTicket (NST) with  the value  (lable), which  can be used  as  psk_id in 

the future handshake. This is called handshake resumption and  can be used  in the 

future to have  the ability  of sending data  in the first flight  of the protocol.  In this 

part,  we need  to have  an outlook about  the security properties of resSec. This post 

handshake message is crucial  for the agreement properties satisfied  by resSec. This 
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post handshake message is encrypted using  the key trKey. The rule of sending the 

NewSesstionTicket message, as shown below. 
 

rule dh_server_send_nst: 

let 

trKey =  HKDF(«  MS,  ’tr’>, h(<TSH,TST>)  >) 

resSec =  HKDF(«  MS,  ’res’>, h(«TSH,TST>,TSR>)  >) 

Msg  =    label 

in 

[St_Dh_S_11(S,C,MS,TSH,TST,TSR), Fr( label)] 

-[ Dh_Server_Ts(TSH, TSR), 

Dh_Server_Claim_Secret(S, ’resSec’, resSec), 

Running(S,C,<’C’,’S’,’DH’, resSec >), 

Commit(S,C, <’S’,’C’,’DH’,  resSec >), 

Honest(S), Honest(C) 

]-> 

[Out(sencMsgtrKey)] 
 

 

Executions  and Lemmas.  We need  to verify  our  models if it behaves as expected. 

To this end; the executable lemmas are the best techniques to do this task, which  is 

checking  our  security properties model  behaviour since executable lemmas are re- 

sponsible for proving or disproving these  security properties.  We have  four  sub 

modes  of handshake protocols (Hello  Retry  Request  , No  Hello  Retry  Request  , 

Client Authentication and No Client Authentication), each sub mode needs a lemma, 

so we need  to specify  four  different lemmas to describe  if the property hold  (exist 

trace), these lemmas are defined by a model that contains a full handshake consider- 

ing the disability of compromising any agent by the adversary. Two of these lemmas 

are shown below,  the first one for a handshake with  client side authentication with 

no HelloRetryRequest (HRR) message. The other  lemma  is without client authen- 

tication,  but with HRR: 

lemma 1: 
 

lemma   dh_nhrr_cauth_executable: 

exists-trace 

" Ex  TSH m1  m2  TSR  #i.   Dh_Server_Ts(TSH, TSR)@i   & 

TSH =  <CH(m1),SH(m2)>  & 

not  (Ex tail.  TSR  =     <’no_cauth’, tail >) & 

not  (Ex C  #j.  Rev(C)@j)  " 
 
 

lemma 2: 
 

lemma   dh_hrr_ncauth_executable: 

exists-trace 

" Ex  TSH TSR  tail #i.   Dh_Server_Ts(TSH, TSR)   @i  & 

not  (Ex m1  m2.     TSH =  <CH(m1),SH(m2)>)  & 

TSR  =  <’no_cauth’, tail >  & 

not  (Ex C  #j.  Rev(C)@j)  " 

Dh_Server_Ts(TSH,  TSR) 
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These action facts have been used  to restrict  traces to a specific mode/sub-mode. 

If the  term    TSH =  <CH(m1),SH(m2)>) does  not  contain  HRR, then  the  hand- 

shake  do not involve  HRR message.  If the tag ’no cauth’  is not included with  the 

TSH term,  then  no client side authentication is required in the handshake. The au- 

tomatic  verification shows  the success  of lemmas, and  if the security property has 

accomplished. 
 

 

5.0.1.4   Diffie-Hellman Mode Analysis 
 

The following analysis  has been verified,  tested  and updated for the following orig- 

inal analysis, which aims to verify the satisfaction of the property for different ways 

of executing the handshake (with HRR, no cauth  ...etc.). Secrecy and authentication 

are the security properties that we are interested in. Each sub-mode need to be tested 

for the satisfaction of each property. For efficiency, and  according to specifications 

of the properties in Lowe’s hierarchy of authentication specifications [67], proving 

the "lemmas"  for the whole  model  means  that  we can conclude that  every  "mode" 

satisfies  it.   But, if we  can’t prove  the  lemma  for the  whole,  then  we  need  to be 

more  specific in defining lemmas, for instance, defining lemmas for the handshake 

with/without client-side authentication. 

The security properties have  the form  of implication, so the original researcher 

have  added the  restrictions to the  premise to be able to constrain the  lemma  to a 

specific sub-mode. To do so, they  have  added the constraint  Dh_Role_Ts(TSH, 

TSR)@i  to the  premise.  Where,  i is a temporal variables.  The set of traces  will 

be  partitioned into  two  sub  modes;   with  client  side  authentication and  without 

client  side  authentication.  The last partition that  concerning the HRR will not  be 

included here, since it doesn’t  affect the validity of the analysis  in this stage.  More- 

over,  the  precision, in  this  case,  is decreased especially with  the  existence  of an 

attack,  e.g., the  attack  would be applied to the  handshake with  HRR during the 

mode  without client  side  authentication.  For this  reason,  they  consider the  addi- 

tional  partition induced by the optional HRR, especially,  when  the attack  exploits 

the  structure of this  exceptional flow.   They  have  used  the  restrictions to  define 

sub  mode  specific lemmas and  adding the following restrictions, if they  constrain 

the lemma  to consider only the handshakes with client side authentication: not(Ex 

tail.  TSR  =  <’no_cauth’, tail>) as a conjunction to its premise. In con- 

trast,  the handshakes without the client side authentication will include the restric- 

tion    TSR=<’no_cauth’, tail> as a conjunction to its premise, binding the tail 

variable to the all messages. To prove  the PFS for a server  running Diffie-Hellman 

mode  with client side authentication, the used  lemma  would be specified  as shown. 
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lemma   dh_cauth_server_pfs: "All S  tag  

x  TSH TSR  #i.( 

Dh_Server_Claim_Secret(S, tag, x)@i  & 

Dh_Server_Ts(TSH, TSR)@i   & 

not  (Ex tail.  TSR  =  <’no_cauth’, tail  >)) 

==>  (not (Ex #j.    K(x)@j)| 

(Ex A  #j.  Rev(A)@j  &   j<i &   Honest(A)@i))" 
 
 

Secrecy. the form of all secrecy claims in this mode  will be   Dh_Role_Claim_ 

Secret(agent, termtag, term), where  termtag either  is encryption key 

’encKey’, message authentication key ’macKey’, traffic key ’trKey’, 

or resumption secret ’resSec’. 

Server  role, the rule    dh_server_receive_fic includes three  of secrecy claims 

for encKey, macKey, and trKey. The forth secrecy claim for resSec. is added to the rule 

dh_server_send_nst specifically  after the NST message. 

 
 

 
Then, we made  sure to specify and verify the following lemmas: 

dh_server_secrecy, the overall secrecy does not hold, the (×) sign shows an 

attack. 

dh_ncauth_server_secrecy, the secrecy of the anonymous mode also does 

not hold, the (×) sign shows  an attack too. 

dh_cauth_server_pfs, the PFS of the authenticated mode have been proven, 

the (  ) sign shows  that  the secrecy  property has proven to be secure,  detailed fol- 

lows: 

The first two properties does not hold  since the attacker runs  the protocol as an 

anonymous client  to learn  the  keys.   The third  property was  proven to hold.   We 

conclude both,  secrecy  and  PFS are satisfied  using  the authentication mode,  while 

the server  fails in anonymous handshake mode  no client authentication (ncauth). 

As a result,  the  handshake with  the  client  side  authentication satisfies  secrecy 

and  PFS, regardless sending the  HRR message or not.   However, the  handshake 

without using  the client side authentication reveals  attacks  that violate  secrecy and 

does not satisfy it. Taking  into consideration that the secrecy could  still satisfy for a 

specific sub mode  using  the handshake without client authentication when  sending 

the HRR, but  this isn’t a general  situation, so, we do not rely on whether sending 

HRR or not in any future investigations. 

Client.  The lemma    dh_client_pfs has been  satisfied  and  correctly  proven 

by Tamarin prover, which  means  that client side secrecy is done.  As a result,  every 

single sub mode  satisfies the secrecy and PFS for this handshake mode. 

Agreement.  To claim facts in this mode  we need  to follow a specific structure in 

Tamarin, which shown below: 

Commit(a, b,  <  ’C’,’S’,’DH’, t>) 

Running(a, b,  <  ’S’,’C’,’DH’, t>) 
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The commit  claim and the running claim are made  by an agent a running as a client, 

presumably with agent  b running as a server. 

Server The defined lemmas for this part is shown in the Table 5.1: 
 

TABLE 5.1: Server agreement 

 
Lemma  (security property) Verified (Satisfied) 

dh_server_aliveness × 

dh_ncauth_server_aliveness × 

dh_cauth_server_injectiveagreement 

   
As shown in the Table 5.1, the first two properties do not hold the security spec- 

ification,  which  implies  an attack;  as proven by Tamarin tool.  However, if we used 

the client side authentication, then  the injective  agreement between the server  and 

the client will be satisfied  with every key. 

Firstly, for the Client we need to specify    dh_client_injectiveagreement, 

in order  to analyse  the agreement guarantees of the client, with  a positive assump- 

tion, that it would hold.  However, after applying the lemma  using Tamarin tool, the 

attack of disagreement on the client name appears between the client and the server. 

The cause of this returns to the fact that, for security reasons, the client never  sends 

his name. 

The proposed solution by the researcher [29] was to achieve  the injective agree- 

ment  by using  a ClientHello as a holder to include the  agent  name  of the  client, 

which  could  be included in the handshake hash.  But, this solution needs  to change 

the structure of TLS 1.3 protocol.  The problem could  be solved  if the agent  name 

replaced by an IP address and to be included in the hash function. 

The client agreement properties make  no much  sense in the context  of anonymous 

clients.  To show  this, we specify client weak agreement (lemma  dh), which resulted 

in disagreement as in   dh_client_injectiveagreement.  So, the definition of 

properties of anonymous agreement expressed as follows: 
 

lemma   dh_client_anonymous_weakagreement: 

"All a b  m   #i. 

Commit(a,b,<’C’,’S’,’DH’, m   >)@i 

==>  (Ex c ts #j. 

Running(b,c,ts)@j) 

|(Ex X  #r.  Rev(X)@r  &   Honest(X)@i)" 
 

 

Note how dh_client_anonymous_weakagreement degenerates to 

dh_client_aliveness by relaxations on the properties. 
 

lemma   dh_client_anonymous_injectiveagreement: 

"All a b  t #i.( 

Commit(a,b,<’C’,’S’,’DH’,  t>)@i & 

==>  (Ex c #j. 

continue ... 
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...continue 

Running(b,c,<’C’,’S’,’DH’,  t>)@j & 

j <  i & 

not  (Ex a2 b2   mode   #i2. 

Commit(a2,b2,<’C’,’S’,  mode, t>)@i2 & 

not (#i2 =  #i))) 

|(Ex X  #r.  Rev(X)@r  &   Honest(X)@i)" 
 

 

The  main  difference between these  two  lemmas corresponds to  non-anonymous 

lemma  is that they do not require the agent  b to have been running apparently with 

an agent a. Which means, it’s OK if agent b does not know the agent name of a. Con- 

sidering these properties, the verification of satisfaction of these lemmas are show in 

Table 5.2. 
 

TABLE 5.2: Week agreement vs. injective agreement 

 
Lemma  (security property) Verified (Satisfied) 

dh_client_anonymous_weakagreement 

  dh_client_anonymous_injectiveagreement 

  dh_cauth_client_injectiveagreement 

   

 

The Table  5.2 shows  the  prove  of the  first  two  lemmas, which  guarantee the 

anonymous client that the server  injectively  agrees  on the values  of encKey, macKey, 

trKey, and resSec with somebody. The client may be seen as idetified by that specific 

handshake run,  as it’s known that  we derived the secret  values  from  the secret  of 

Diffie-Hellman and both nonces.  The dh_cauth_client_injectiveagreement 

is proven to be violated if the commit  claim    (Commit(C,S,<’C’,’S’,’DH’, < 

macKey, encKey,  trKey  >  >) )  is made  in the  rule  that  models the  send- 

ing of Client Finished.   In this stage,  the client isn’t sure  if the server  has received 

it’s certificate  and  it’s identification. We satisfy  the clients  claim after  receiving an 

encrypted message with  trKey from the server,  which  is derived partially from the 

client certificate.  Therefore, in the analysis, the rule dh_client_receive_nst de- 

fined to include the mentioned claim. With this, dh_cauth_client_ 

injectiveagreement is proven correctly. 
 

 

5.0.1.5    DHE Mode Results 
 

The summary of the verified  Diffie-Hellman results that  shown in Table 5.3.  Both 

columns;  dh_ncauth  and dh_cauth represents no client side authentication and 

client  side  authentication respectively.  Each  column  represents security property 

from the point  of view of a specific role. 
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TABLE 5.3: Diffie-Hellman Model Results 

 
Security property from role point 

of view 

 

dh_ncauth 
 

dh_cauth 

Secrecy for Server 

PFS for Server 
× 

× 




  

  
Secrecy for Client 

PFS for Client 




  

  





  

  
Aliveness for Server 

Weak Agreement for Server 

Non-injective Agreement for Server 

Injective Agreement for Server 

× 

× 

× 

× 









  

  

  

  

Aliveness for Client 

Weak Agreement for Client 

Non-injective Agreement for Client 

Injective Agreement for Client 

 

× 

× 

× 









  

  

  

  

Anonymous Weak Agreement for Client 

Anonymous  Non-injective Agreement 

for Client 

Anonymous Injective Agreement 

for Client 

      

      
  


  

  

     

     
 

     
 

  

  

  

 

 

5.0.2   Pre-shared keys (PSK) Modes  Modeling and Analysis 
 

The FIGURE 5.2 show  the TLS1.3 PSK handshake protocol. 
 

 
 

 
 

FIGURE 5.2: TLS1.3 PSK handshake protocol [65] 
 
 

This section  includes summary and  results of the PSK mode  handshakes analysis. 

The two  modes  only  differ  in the key exchange phase.   Thus,  we will model  them 

with just one mode.  Instead of using the pure Diffie-Hellman mode in analyzing the 

handshakes, we will be modeling the PSKs as fresh nonces  that are secret and injec- 

tively agreed on. Keeping  in mind  that the PSK is a result  of a previous handshake. 
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As it is stated in the  TLS protocol RFC8446 that  no need  for the  server  to au- 

thenticate itself in the PSK modes  since it is already authenticated by the PSK. While 

it’s a must  in the Diffie-Hellman mode.   The assumption here  is the possibility for 

the client to authenticate itself in the PSK modes.   As we don’t  use Diffie-Hellman 

mode  in this analysis, in this case, the PSK seems  to be generated out of the band. 

Considering all of the above, it’s logical to assume that these PSKs authenticate both 

parties. The delayed client authentication in PSK modes  are included in this model. 

We aim here to include this feature in the final model,  but while the dependency 

graphs are not readable, i.e., has  a huge  size, which  prevents us from  conducting 

the sanity  checks on that model.  So, we need  to create  smaller  models to check the 

availability of this feature. This allows  us to verify that the corresponding rules are 

defined appropriately, then apply  the same technique for the final model. 
 

 

5.0.2.1   Pre-shared key Modes Modeling 
 

In this section, we describe  the model  in an abstract level. In addition, we prefer not 

to present the whole  rules  for every  message rather describe  them  on a high  level. 

This is because of the messages in the previous handshake (Diffie-Hellman) is almost 

the same and no new messages will be added to PSK handshake. Finally, we express 

the modeling process  of PSK modes  in Tamarin tool. 
 

 

Key Infrastructure 
 

Although the  client  side  authentication is supported in the  PSK modes,  the  sym- 

metric  pre-shared keys are the main  source  of authenticity. The persistent fact (!) is 

used  to represented PSK, !Psk(S,C,~psk_id,  ~psk), the main  idea behind this 

fact is to ensure the freshness and  uniqueness of PSK and  psk_id terms,  in order  to 

prevent the adversary of revealing the PSK directly without the need  for producing 

the reveal action fact. 
 

rule register_psk: 

[Fr(~psk),  Fr(~psk_id)] 

-> 

[!Psk(S,C,  ~psk_id, ~psk)] 

reveal_psk: 

[!Psk(S, C, psk_id, psk)] 

-[Rev(S), Rev(C)]-> 

[Out(psk)] 
 

 
 
 
 

Key Exchange 
 

We define the first rules of the handshake protocol for ClientHello and ServerHello 

for both pure  PSK mode,  and PSKDH mode.  In this phase,  each rule is defined sep- 

arately  for each mode.  Moreover, the tags that indicate the mode  are also included 
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in the  exchanged messages.  Also,  nonces,  psk_id term  are  used  to identify the 

corresponding PSK. 

ClientHello =  <~Nc,  ’pskid’,  psk_id > 

ServerHello =  <  ~Ns, ’pskid’,  psk_id > 

 
 

 
The  messages of the  PSKDH  mode  additionally  contains Diffie-Hellman half 

keys: 

ClientHello =  <  ~Nc, ’pskdhe’,  psk_id,  ’g’^~ec > 

ServerHello =  <  ~Ns, ’pskdhe’,  psk_id,  ’g’^~es > 

Each mode  and  each role have a rule to model  the sending and  receiving messages 

in this phase.  For example, the rule pskonly_client_send_ch  and 

pskdh_client_send_ch, these  messages (the sending and  receiving messages), 

then  collected  in the TSH term  after  wrapping them  with  the corresponding func- 

tion.  Then,  after  the handshake phase,  TSH is fully defined and  the keys encKey 

and macKey are available to the roles. 

The sources  of the derived keys differ according to the model  of the handshake. 

MS in the pure  PSK mode  is set to the value of PSK. While we derive  MS in the PSK 

mode  that uses Diffie-Hellman key exchange from both input secrets. 

The  state  facts  of the  form  St_Psk_S_3(S, C, MS,  TSH,   mode) are  pro- 

duced by the rules modeling the ServerHello message. The term mode  in the state 

fact is used to indicate the mode of the handshake, either ’pskonly’ or ’pskdh’, 

we use it later when  defining lemmas. The rules modeling subsequent messages are 

also defined for either  mode; the mode  term here kept abstract during the rewriting 

of multisets. 
 

 

Server Parameter 
 

As in Diffie-Hellman mode,  this phase  contains only the messages Encrypted 

Extensions  and CertificateRequest.   These  messages sent  by  the  server 

and  received by the client after  they  are encrypted with  encKey.  They also form 

the first of the TST term message. Taking  into account  that the client authentication 

is optional, we define  the  following rules,  rule  psk_server_skip_cr,  and  rule 

psk_client_skip_cr to allow  for traces  where  CertificateRequest is not being 

sent.  These rules  also use the tags ’no_cauth’ and  ’cauth’ to indicate the use 

of the CertificateRequest or not.  Both pairs  can be applied to the same  state  facts, 

which might  only differ in the content  of the tag, and the handshake transcript. 
 

 

Authentication Phase and New Session Ticket (NST) 
 

In this phase,  the message Server Finished  is sent by the server,  which is defined as: 

Msg  =  HMAC(h(<TSH,TST>), macKey) 

The Finish message is the last one included in the term TST. The tag of the state facts 
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distinguishes between two  applicable sets  of rules.   Which  means,  the  applicable 

rule depends on the tag, i.e., if the tag indicates client authentication, then the mod- 

eled sending and  receiving rules  of Client Certificate and  Client CertificateVerify 

becomes  applicable. Furthermore, psk_client_skip_cauth and 

psk_server_skip_cauth are applied to the produced state  facts.  The skip  rule 

change  the first values  of the term  TSR from  CTC and  CVS to add ’no_cauth’ as 

the first value  to TSR instead, which  is the same as in the DH mode,  because  of ex- 

pecting  TSR to be part  of the state facts by the rules psk_client_send_fic  and 

psk_server_receive_fic. We keep the client authentication tag in the state facts 

for future use of submode selection in the definition of lemmas, even though it is not 

used  anymore after the split case on the state fact. 
 

 

Executability 
 

We define  and  use the fact Psk_Role_Mode(mode,  tag) in order  to check if the 

model  has the ability to execute  valid  protocol traces.  The term mode  represents ei- 

ther  ’PSKDH’   or ’PSKONLY’, while  the term  tag represents either  ’cauth’ or 

’no_cauth’. Then, each of the above terms needs to have a separate lemma to rep- 

resent it, which means  that we need to specify four executability lemmas. The hand- 

shakes  with  client authentication in pure  PSK mode  satisfies  the following lemma: 
 

 
lemma   pskonly_cauth_executable 

exists-trace 

"Ex   #i. 

Psk_Client_Mode(’PSKONLY’,  ’cauth’)@i & 

not  (Ex C  #j.    Rev(C)@j)" 
 
 

In the next section,  we show  how  to use these  action  facts to reason  about  the 

mode  and how it is explained. 
 

 

5.0.2.2   PSK Mode Analysis 
 

In this section,  we consider the secrecy  properties, the agreement and  the naming 

of lemmas as they  defined in the previous sections.  As mentioned in executability 

section above, we have four modes  of execution. The action fact Psk_Role_Mode 

(mode, tag) is for analyzing/deducing a specific mode.   For the server  role, we 

use Psk_Server_Mode(mode, tag).  These action  facts are created whenever a 

rule produces a claim for secrecy or agreement. 
 

 

Secrecy 
 

The action facts of the form Psk_Role_Claim_Secret(agent,term-tag,term) 

are used  to define  the corresponding rules  of the secrecy  properties terms  encKey, 

mailto:@i
mailto:@j


Chapter 5.   Modeling and Analyzing of TLS 1.3 Handshake Modes 57  

 
 

macKey, trKey, and  resSec. The term-tag describes the type  of the term.  The proper- 

ties for the analysis of client and  server  secrecy are defined in Table 5.4. The client 

authentication (cauth) is not considered in the defining lemmas. 

 

TABLE 5.4: Secrecy 

 
Lemma  (security property) Verified (Satisfied) 

psk_server_secrecy           
  pskonly_server_pfs × 

pskdh_server_pfs           
  psk_client_secrecy           
  pskonly_client_pfs × 

pskdh_client_pfs           
   

We have verified  the secrecy results for both client and server  using  Tamarin tool. 
 
 

To illustrate the mode  selection,  we define the following lemma: 
 

lemma   pskonly_client_pfs: " All S  tag  

x  cr #i.( Psk_Client_Claim_Secret(S,  

tag, x)@i  & Psk_Client_Mode(’PSKONLY’,  

cr)@i) 

==>  (not (Ex #j.    K(x)@j) 

|(Ex A  #j.  Rev(A)@j  &   j<i &   Honest(A)@i) ) " 
 

 

As shown in the Table 5.4, Tamarin reveals  an attack, which is No PFS achieved) 

for both pskonly_server_pfs and pskonly_client_pfs. This refers to deriv- 

ing the keys of the pure  PSK mode  from the shared value  between two parties, and 

no ephemeral secrets where  used. 

In this thesis, we propose the use of compound PSKs by updating Stettler [29] model, 

specifically,  the register_psk rule,  and  the reveal_psk, which  shown later  in 

this thesis.  The Tamarin result verifies the PFS for both parties as shown in Table 5.5, 

which means  that the result has been changed from (falsified-attack) to (verified-proof). 

 

TABLE 5.5: Achieving PFS for both parties 

 
Lemma  (security property) Verified (Satisfied) 

pskonly_server_pfs           
  pskonly_client_pfs           
   

Return  back to the rest of results shown in the Table 5.4, we recognize that  all 

remaining four lemmas have successfully proved, which  means  that secrecy on the 

keys  is satisfied  in every  sub-mode.  Additionally, the  pskdh mode  ensures PFS 

for both  roles.   All proved properties assume that  the  value  of PSK is secret  and 

injectively agreed on by both parties. 
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Agreement 
 

As we are interested in the agreement properties on the terms encKey, macKey, trKey, 

and  resSec. We verify this by adding the action  facts to the corresponding rules,  as 

shown: 

Commit(a,b,<’S’,’C’,’PSK’, t>) 

Running(b,a,<’S’,’C’,’PSK’, t>) 

We define the following lemmas to analyze the action facts rules: 
 

TABLE 5.6: Injective Agreement 

 
Lemma  (security property) Verified (Satisfied) 

psk_server_injectiveagreement           
  psk_client_injectiveagreement           
   

Tamarin has verified  the strongest authentication property, which is the injective 

agreement. If the PSK is secret and provides authentication then PSK modes  satisfy 

mutual injective  agreement. Every  agreement in this work  have  been  verified  and 

satisfied  by the PSK modes  [29]. 

 

TABLE 5.7: PSK Model Results - Original Model 

 
Security property from 

role point  of view 
pskonly 

original 
pskonly 

updates 

 

pskdh 

Secrecy for Server 

PFS for Server 
 

× 

 
 
 

  

  

 
 
 

  

  
Secrecy for Client 

PFS for Client 
 

× 

 
 
 

  

  

 
 
 

  

  
Aliveness for Server 

Weak Agreement for Server 

Non-injective Agreement for Server 

Injective Agreement for Server 

 
 
 
 
 
 


  

  

  

 
 
 
 
 
 


  
  

  

  

  

 
 
 
 
 
 


  
  

  

  

  

Aliveness for Client 

Weak Agreement for Client 

Non-injective Agreement for Client 

Injective Agreement for Client 

 
 
 
 
 
 


  
  

  

  

  

 
 
 
 
 
 


  
  

  

  

  

 
 
 
 
 
 


  
  

  

  

  

 
 
 

5.0.2.3    PSK Mode Results 
 

In this analysis, we suppose that both parties are already authenticated by the PSK. 

This leads  us to temporarily ignore  the delayed client side  and  to cover  it back in 

session resumption section.  The column  in Table 5.7 pskonly-original represents the 

original PSK mode modeling by Stettler [29], while the pskonly-updates represent our 

new modeling and  updates made  on original modeling. Lastly, the column  pskdh 

represents the combination of both  modes  (PSK and  the ephemeral Diffie-Hellman 

secret) in order  to achieve PFS. 
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5.0.3   0-RTT Modeling and Analysis 
 

This section  introduces the 0-RTT, compare it with  the QUIC [68]; Google protocol. 

Showing advantages and disadvantages of each. The way of implementing, model- 

ing and analysis  of 0-RTT and finally to show  the anlysis results. 

We need  to use some  cryptographic protocols for instance, Key exchange (KE) 

protocols; to establish a secure  key between two parties. QUIC, TLS, and  SSH pro- 

tocols  are combined with  KE protocols to establish such  secure  keys  between two 

parties in a network [15]. 

Although the performance has always been the main  concern  for cryptographic 

protocols, the optimizations mainly  focused  on the cryptographic operations, which 

controlled the overall cost of executions for a long period. 

Not only the computation process  becomes  much  faster nowadays; but also ad- 

vancing and  deployment of elliptic curve  cryptography, which  enforces  the worker 

in this  field  to extremely reduced the  cost of cryptographic operations over  time 

because  of the  very  fast  progress in technology.  As a result,  the  communication 

complexity is the most important factor that controlling the overall efficiency of key 

exchange protocols [14]. However, efficiency must  be compatible with other  factors 

such as confidentiality and integrity of the transmitted data  that are represented by 

PFS and  preventing replay  attacks.   To this end,  Gunther et al. [15] have  proposed 

a solution that approved full forward secrecy for the transmitted payload messages 

via constructing their own 0-RTT key exchange protocol to achieves PFS using punc- 

turing method, which allows decrypting each ciphertext just once. 

The main  idea behind Gunther et al. [15] work,  is to generate many  keys using 

only  one master key (SK) via HIBE [28] and  one-time signature [69].  FIGURE 5.3 

summaries the whole process  as follows: 

 

• Step1: Generate secrete keys that decrypts one ciphertext each; via master key. 

 
• Step2: Using HIBE and pseudo-random generator to generate step1 keys. 

 
• Step3: Shows an example to use the sk(0101) to decrypt ciphertext(0101). 

 

 
• step4: Determine the path  from root to the intended key (leaf). 

 
• step5: Define nodes’ siblings. 

 
• Step6: Remove the secret key path,  which makes  it a one time use. 

 
• Step7:  Shows  the number of growing secret keys, which  equals  two times  of 

security level that we want to achieve, for instance  we need 256 keys to achieve 

128 bit security as shown in the equation |sk\0101  ≈ 2 ∗  secpar. 
 

• Step8: Shows the number of secrete keys for whole  process;  using  puncturing 

many  times, which is unfortunately a very large size of keys (GBytes) needs  to 

be stored  on the server. 
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FIGURE 5.3: Puncturing algorithm to prove  PFS [15], [70]. 
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5.0.3.1   0-RTT using  Diffie–Hellman exchange 
 

The FIGURE 5.4 show  the TLS1.3 0-RTT handshake protocol. 

Both QUIC and  TLS 1.3 are using  Diffie-Hellman key exchange protocol to derive 

 

 
 

FIGURE 5.4: TLS1.3 0-RTT handshake protocol [65] 
 

 

a 0-RTT key, which  done  in the first stage  by sending the client key share  to a pre- 

visited  server,  then  upgrade the key to a stronger one by combining the server  key 

share  using  Diffie-Hellman calculations to achieve  forward-secret key.  The whole 

detailed process  works  as follows.   The client  already has  the  server configuration 

including a semi-static Diffie-Hellman share  gs  from  the  previous connection; the 

server  keeps  the exponent (s) for a short  period of time (about  2-7 days)  to keep  it 

fresh  and  to use  it in the PSK process.   The server  configuration authentication in 

QUIC is asymmetrically processed (offline) signed  structure that announced by the 

server,  while TLS 1.3 is signed  symmetrically (online) during a prior  handshake. As 

the process  continue, the client sends  an ephemeral Diffie-Hellman share  gx, then 

the  exponential equation (gs )x   = gxs  is used  to derive  K1  for the  0-RTT key,  this 

allows  the client to send  encrypted data  directly. The server  uses the same  process 

to derive  the same  key using  (gx)s ; this enables  0-RTT data  decryption; the server 

then strengthens the key by responding its own ephemeral key share gy . Finally, they 

both agree on the same stronger, forward secrecy key K2  that is gxy , which  remains 

secure;  no matter if the long-term secret has compromised for both  parties or even 

the server  configuration key share gs [15]. 
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5.0.3.2   0-RTT using  Pre-shared key exchange 
 

Pre-Shared keys are part of handshake mode  in TLS 1.3, which can be established in 

a previous connection and  then  can be used  to establish a new connection (session 

resumption). As well, the 0-RTT key K1  is derived from the previously established 

secret key. This allows the client to send an immediate early data using  K1, without 

interacting the full handshake with  the server.  Then another key K2  is updated be- 

tween  parties from the PSK for the upcoming messages. To ensure forward secrecy 

we combine  the PSK with a Diffie-Hellman key share. 

In this thesis,  we are verifying and  modeling 0-RTT in the pure  PSK mode  re- 

garding of showing the secrecy and agreement on the keys used  to protect the early 

data [15]. 
 

 

5.0.3.3   0-RTT Model 
 

We are modeling the set of rules  that  defining an alternative key exchange phase. 

The early  EncryptedExtensions and  the  end_of_early_data are  not  included here 

since they are irrelevant to our properties and the latter needs  synchronization. 
 

 

The early keys defined as follows: 
 

 
earlyEncKey =  HKDF(<psk,’enc’>, h(CH(..))) 

earlyMacKey =  HKDF(<psk,’mac’>, h(CH(..))) 

earlyTrKey =  HKDF(<psk,’tr’>, h(CH(..))) 
 
 
 

In order  to send  and  receive  ClientHello messages tagged with  pre-shared key 

identity and early data  ’pskided’ we need  to expand each role of the model  with 

rules that consume the state facts St_Psk_Role_1(..) and produce the state facts 

St_Pskonly_Ed_Role_1(..). The definition of ClientHello as shown: 

ClientHello =  <  ~Nc, ’pskided’,  psk_id > 

There  exist  other  rules  to model  the  Early Finished,  taking  the  advantage  of 

using  the  same  state  facts as that  used  in the  above  ClientHello message.  They 

model  the  sending and  receiving of Msg  =  HMAC(h(CH(..)), earlyMacKey) 

encrypted using  earlyEncKey.  The rules  modeling the Early Finished  produces 

the  state  facts St_Pskonly_Ed_Role_2(..).  They  are  consumed by rules  that 

model  the sending and receiving of the ServerHello. Lastly, modeling the reception 

of the EncryptedExtensions rule.  This allows  the client to produce the claims 

for the security properties. The client would have no agreement guarantees if these 

claims made  earlier,  i.e., in the rules that receive ServerHello [29]. 
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Analysis of 0-RTT 
 

In general  0-RTT messages considered to be part  of the PSK modes.   However, the 

previous modeler [29] have  decided to took  them  apart  to distinguish the secrecy 

claims of the form Psk_Ed_Role_Claim_Secret(agent, term-tag, term), 

from the claims made  by roles running in the PSK modes.  They have specified  the 

security properties as shown in Table 5.8: 

 

TABLE 5.8: 0-RTT Analysis 

 
Lemma  (security property) Verified (Satisfied) 

psked_client_pfs × 

psked_client_secrecy 

  psked_server_pfs × 

psked_server_secrecy 

  psked_client_injectiveagreement  

psked_server_injectiveagreement × 

psked_server_non_injectiveagreement 

   
Tamarin reveals  an attack  on both  PFS lemmas, in addition to replay  attack  on the 

injective  agreement between parties.   This  refers  to  the  derivation of early  keys 

from  the static  preshared key.  If the client is unable to receive  messages from  the 

server.   This indicates that  the  server  has  no freshness guarantee about  this  data. 

However, the  client  has  freshness guarantees from  the  ClientHello’s nonce.   This 

is why  the psked_client_injectiveagreement is proved. The server  does  a 

non-injective agreement with the client on the early keys, however, it has no replay 

protection.  This is proven by psked_server_non_injectiveagreement.  The 

early  data  is unknown to the  adversary if both  parties are honest,  which  satisfies 

both secrecy lemmas [29]. The Table 5.8 depicts the security properties analysis  for 

0-RTT. 

Applying our first approach to resolve the security properties for the above anal- 

ysis of 0-RTT by combining more  than  pre-shared key together, which  resulted in 

converting the results of both, the client and the server  PFS from an attack  (falsified) 

to secure  transition (verified). FIGURE 5.5 shows  the Tamarin code for original and 

our  proposed models, followed by the  the  Tamarin results for both,  as shown in 

FIGURE 5.6. 
 

 
 

FIGURE 5.5: The original Tamarin code vs. Our Proposal 
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FIGURE 5.6: The original Tamarin Result vs. Our Proposal Result 
 
 

In order  to solve  the  replay  attack  problem, we  propose that  after  the  server 

receiving the client’s key-shares, it sends  its key-shares (a list of keys or a database 

to be saved  by the client) to the client in order  to create a session  key by combining 

them  (one-by-one) with  its own key-share, this allows  sending secured data  on the 

first flight. The PFS problem happens when  the server  key-share is not available for 

the client at the first step of resumption secret. 

This also (more  than  key-share) leads  to prevent the  replay  attack.   For exam- 

ple, The server  creates  its own  (Deffi-Hellma) key-share (x1   =  ga1 , x2   =  ga2 , x3   = 

ga3 , x4  =  ga4 , x5  =  ga5 ) then  sends  them  to the client.  The client keeps  these  key- 

shares,  then  start  using  them  one after another. Whenever, the client wants to send 
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0-RTT data  to the server,  the client creates  a session  key using  the server  key-share 

(y1  = gb1 , y2  = gb2 , y3  = gb3 , y4  = gb4 , y5  = gb5 ). In this case, both parties are ready 

to agree  on the session  keys and  to start  using  each session  key once, then  drop  it. 

Lastly, when  arriving the last session key, the process  is repeated to create a new set 

of shared keys. This will solve the problem, but we need some re-architecture of the 

TLS 1.3 protocol to be able to do the Diffie-Hellman on the first flight. 
 

 

0-RTT Data Analysis Results 
 

The analysis  of 0-RTT data  properties are shown in the table  5.9. The  psked column 

represents early data of the PSK modes. 
 

TABLE 5.9: 0-RTT Data Analysis Results 

 
Security property from role point  of view psked 

Secrecy for Server 

PFS for Server 
 

× 

Secrecy for Client 

PFS for Client 
 

× 

Aliveness for Client 

Weak Agreement for Client 

Non-injective Agreement for Client 

Injective Agreement for Client 









  

  

  

  

Aliveness for Server 

Weak Agreement for Server 

Non-injective Agreement for Server 

Injective Agreement for Server 





 

× 

 

The FIGURE 5.7 shows the Tamarin prover screen shot for some of psked results. 
 

 
 

FIGURE 5.7: The Tamarin psked screen shot 
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5.0.3.4   Replay Attack Problem 
 

The attacker can replay  messages between parties to make  them  derive  the  same 

key twice or to contribute to the derived key by including nonces  in the exchanged 

messages between the client and the server.  QUIC protocol strives to solve the prob- 

lem by reserving a server  to store  all nonces  in "strike register"  a size restricted by 

a server-specific prefix "orbit" including the current time in the nonces  and refusing 

any repeated nonce  [15]. This approach has been  succeeded to prevent replays on 

key-derivation on the key exchange level by prohibiting the adversary of making 

parties derive  the same key twice. However, it fails to prevent replays on actual data 

exchanged (logical replay  attack),  specifically,  working with  the clustered and  dis- 

tributed servers.   As a result,  the replay  attack  problem is independent of whether 

the 0-RTT key exchange is based  on Diffie-Hellman or pre-shared keys [71]. On the 

other  hand Gillmor  et al. [72] have  also tried  to solve  the replay  attacks  by show- 

ing that  an attacker can make  the encrypted data  that  sent  by the client alongside 

with  0-RTT key-exchange messages to be delivered twice as shown in FIGURE 5.8. 

Combining the overall channel protocol that works  on delivering the data messages 

reliably;  with  any 0-RTT anti-replay mechanism applied at the key exchange level 

becomes  worthless (invalid) and this is because  of resending the rejected 0-RTT data 

by the automatically derived key that aimed  to guarantee delivery [15]. 

 

 
 

FIGURE 5.8: Replay attack by Daniel [72]. 
 

 

The attack work as follows: 

 
• The attacker transports the client’s 0-RTT message and  encrypted data  to the 

server  but keeps the server ’s key exchange response away  from the client. 
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• Forces  the  server  to reboot  in order  to lose  its state  then,  re-send the  same 

message to the server. 

 

• After rebooting; the server  declines  the 0-RTT message of the key exchange to 

keep secure; instead, the server  sends  its own key share, which then passed to 

the client by the attacker. 

 

• The client uses the server  key share  in deriving the final key then, encrypt the 

data  and  re-send to the  server  using  the  derived key  in order  to guarantee 

reliable delivery. 

 

• The server  will  re-process the  data  for the  second  time,  which  represents a 

replay  of the contained application data and results in processing a web trans- 

action twice. 

 

The existence  of distributed server  clusters in real-world; makes  it easier for the at- 

tacker  to forwards the  0-RTT messages to two  servers  and  drops the  response of 

the  first server,  instead of rebooting the  server  and  keeps  the  client  waiting for a 

response, as shown in FIGURE 5.8. This attack  targets the settings with  distributed 

clusters,  which directly affects the cryptographic design of the QUIC protocol. More- 

over,  achieving full replay  attack  protection for envisioned 0-RTT seems  to be im- 

possible.  As mentioned by Langley  and  Chang  [73] that 0-RTT is "designed to die" 

and  the adapted version  of TLS 1.3 handshake will replace  the 0-RTT protocol. In 

general,  QUIC’s strategy [73] resist  some  of the replay  attack  kinds,  while  TLS 1.3 

didn’t,  rather it’s accepts replays as inevitable. which must  be adapted in the future 

versions of TLS 1.3. 
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Chapter 6 
 
 
 

Conclusion 
 
 
 
 

In this thesis, we have investigated, verified,  modified and re-modeled some of TLS 

1.3 security properties; focusing  on handshake protocols based  on previous models of TLS 

security protocols using  symbolic  analysis  tool, consideration the updated parts  in latest  

TLS drafts,  for instance  (draft-28)  till releasing RFC8446 few months ago. The Dolev-Yao is 

the attacker model; using  the Tamarin prover tool. Firstly, we have  upgraded and  

combined more  than  pre-shared key,  which  resulted in prov- ing the PFS for the client 

and  the server  using  the mentioned symbolic  tool.  This drives  us one step further our 

targeted goal, which is reducing the latency overhead to send early payload data in the first 

flight of resuming the handshake protocol us- ing the PSKs, maintaining critical security 

guarantees, specifically  perfect  forward secrecy and  preventing replay  attacks.   This result  

shows  the possibility of solving PFS less expensively than  Gunther et al. [15] since we used  

a simpler and  effective way to delete  the key rather than  puncturing algorithm, where  the 

session key PSK used  once then  keeps  updating different session  keys throughout a single  

session. We also believe  that  the  second  part  of our  proposed solution achieves  replay  

at- tack prevention in theory.   Since, exchanging more  than  Diffie-Hellman key-share 

between the parties and  using  them  one at a time,  then  deleting the used  key is a logical 

solution. But, we need  to verify the created model  in the coming  future, be- sides studying 

the ability  of re-structuring the Diffie-Hellman protocol needs  more testing  to make sure if 

it considered a valid  assumption. We also have verified  that the client can be sure  of 

establishing a secure  channel with  the server  under a per- fect public  key infrastructure. 

We have verified  that the session  resumption of PSK established in Diffie-Hellman satisfies 

all security properties including PFS. 
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